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A B S T R A C T

We discuss modulational instability (MI) in nonlocal optical Kerr media with a sine-oscillatory response which
can model nematic liquid crystals with negative dielectric anisotropy. In the framework of nonlocal nonlinear
Schrödinger equation, MI in this type of media is found to have two unique properties different from those in
other media discussed previously. First, MI exists both when the Kerr coefficient is positive and when it is
negative. Second, the maximum gain points of MI do not shift with light intensity. We also explore the physical
mechanism behind MI in local and nonlocal optical Kerr media by utilizing the theory of four-wave mixing.
Through introducing a phase mismatch term ( kΔ ) and a growth factor (γ), we deduce that the necessary and
sufficient condition for MI to occur is that the phase mismatching during the four-wave-mixing process should
be small enough such that k γ|Δ | < 2| |. Based on this condition, we can uniformly and consistently explain the
results of MI in optical Kerr media obtained in the current work as well as those presented in previous work by
others.

1. Introduction

Modulational instability (MI) is a type of ubiquitous instability
found in nonlinear systems. It signifies the amplification of random
perturbations in a harmonic wave when it propagates in nonlinear
media. The growth of the perturbations generates spectral sidebands,
causing the harmonic wave to evolve into a modulated state. MI has
been studied and identified in various physical systems, such as fluids
[1], plasma [2], and nonlinear optics [3–7], among others. In the
context of optical fibers, MI causes a continuous wave to break up into
a pulse train with a high repetition rate [5,6] in general. For a
monochromatic spatial optical beam, MI splits the beam into a
transversely periodic array of fine localized structures (filamentation)
[3]. Therefore, in optical Kerr media, self-phase-induced MI is con-
sidered to be the precursor of bright soliton formation, whereas dark
solitons require the absence of such MI. However, dark-soliton-like
pulse-trains can be generated [8,9] by cross-phase-induced MI [10].
There are two equivalent methods to discuss the MI in nonlinear optics.
One of these is to examine the evolution of perturbations with linear
stability analysis in the framework of nonlinear Schrödinger equation
[3,7]. The other is to interpret the MI in terms of the four-wave-mixing
(FWM) process [7,11,12].

Spatial nonlocality is one of the most important properties of the
optical Kerr effect. The nonlocality means that the light-induced

nonlinear refractive index (NRI) at a given point is determined not
only by the light intensity at that point but also by the light intensity
near that point. This can be described phenomenologically as [13]

∫n n R E zr r r rΔ = ( − ′ )| ( ′ , )| d ′ ,2
−∞

∞

⊥ ⊥ ⊥
2

⊥ (1)

where nΔ is the NRI, n2 is the Kerr coefficient determined by material
properties, r⊥ is the transverse coordinate vector, the real symmetric
function R r( )⊥ is the response function of the nonlocal optical Kerr
media, and E is the optical field. Since Snyder and Mitchell brought
spatial nonlocality in focus [14], research on nonlocal spatial optical
solitons have been systematically conducted in optical Kerr media with
strong nonlocality, including nematic liquid crystals (NLC) with
positive dielectric anisotropy [15–20] and lead glasses [21–25], among
others. Recently, bright optical solitons were observed in the planar cell
containing NLC with negative dielectric anisotropy [26]. In the 1+1
dimensional model of this system, the NRI satisfies the equation below
[26,27]
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where wm is a positive constant representing the nonlinear character-
istic length, and the Kerr coefficient n2 is negative. The response
function derived from equation (2) is sine-oscillatory.
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This response function was obtained at first in the model of quadratic
solitons [28]. However, the nonlinear process of quadratic solitons is a
second-order nonlinear effect rather than one of the third order. Both
bright and dark solitons have been found in optical Kerr media with the
NRI described by Eq. (2) [27]; however, the dark solitons are unstable.
Hence, discussing MI in the spatially nonlocal optical Kerr media with
the sine-oscillatory response function is useful to the understanding of
the bright soliton stability and the instability of the dark solitons in
such a system.

In spatially nonlocal nonlinear systems, the nonlocality has strong
influences on MI. The first theoretical discussion of MI in spatially
nonlocal optical Kerr media [29,30] was based on linear stability
analysis in the framework of nonlocal nonlinear Schrödinger equation
(NNLSE), and it showed that the gain spectrum of MI is affected by the
characteristic length of the nonlocality and the profile of the response
function. Later, Wyller et al. discussed MI in the model of quadratic
solitons with the sine-oscillatory response [31] using the same method.
It can be shown from Wyller's work that the effective NRI, which is the
second harmonic optical field, is induced by the square of the
fundamental wave (E2), while in spatially nonlocal optical Kerr media,
the NRI is induced by the light intensity (E| |2), as shown in Eq. (1).
Therefore, MI in spatially nonlocal optical Kerr media with the sine-
oscillatory response function can be different from that in the model of
quadratic solitons.

In this paper, we analytically study MI in spatially nonlocal optical
Kerr media with a sine-oscillatory response, and we discuss the
physical mechanism behind the MI. The contents of the paper are
organized as follows. In section 2, we discuss MI in the nonlocal optical
Kerr media with a sine-oscillatory response function in the framework
of NNLSE [29], and it is shown that MI in this system has two unique
properties that have not been reported before. In section 3, we discuss
the physical mechanism behind MI in both local and nonlocal optical
Kerr media by utilizing the theory of FWM. Although the link between
MI and the FWM process has already been established for a local case
[7,11,12], this work is the first exploration of the physical mechanism
behind MI by extending the FWM method from the local case into the
nonlocal one. The necessary and sufficient condition for MI to occur,
which explains whether MI occurs in the optical Kerr media for
different cases, is established in this work.

2. MI in Kerr media with a sine-oscillatory response

In the 1+1 dimensional lossless nonlocal optical Kerr media, a
linearly polarized monochromatic optical beam propagating along the z
axis can be described by the nonlocal nonlinear Schrödinger equation
(NNLSE) [13,20,29]
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where U is the slowly varying complex amplitude of the electric field
satisfying the relation E U ikz= exp( ), k is the wavenumber in the media
with a linear refractive index (n0), and the Kerr coefficient n2 can be
either positive or negative. For different nonlocal optical Kerr systems,
the response functions R x( ( )) are different, such as the Gaussian
function [29], exponential-decay function [17], rectangular function
[29], and sine-oscillatory function [26,27].

The NNLSE has a plane wave solution
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where l0 is its intensity, and R k( )∼
x represents the Fourier transform of

the response function
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Then, we add a random perturbation on the plane wave such that
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to examine the evolution of the perturbation (ψ x z( , )) using linear
stability analysis. Substituting Eq. (7) into Eq. (4) and linearizing with
respect to ψ as ψ x z I| ( , )| ⪡2

0, we obtain the linearized evolution equation
of the perturbation as
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By decomposing the perturbation into real and imaginary parts
(ψ u iv= + ), and using the Fourier transform shown in Eq. (6),
we derive a set of ordinary differential equations in the kx domain
from Eq. (8)
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By solving Eqs. (9) and (10),
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is obtained, where c cand1 2 are arbitrary constants, and the eigenvalue
λ is given by
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It should be noted that if λ is real, the spatial spectrum component
of the perturbation (ψ∼) grows exponentially with z; therefore, the
nonlinear system has MI. By contrast, when λ is imaginary, the plane
wave is stable.

Now, we consider the case where the nonlocal response function is
of the sine-oscillatory type (given by Eq. (3)) and the Fourier transform
of the response function is [31]
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The gain coefficient defined by λg = 2Re[ ] can be obtained as
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which only exists when n I n w k k k/ (1 − ) > /4x x2 0 0 m
2 2 2 2. As the gain coeffi-

cient is an even function of kx, we discuss only the variation of g with
k| |x .

When n < 02 , MI occurs when
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Fig. 1 shows the gain spectra of MI for three values of the plane wave
intensity. It can be seen that when l0 increases, the region of MI
expands and the gain coefficient at the same wavenumber also
increases. This shows that the intensity of the plane wave tends to
boost MI in this case. An interesting characteristic of the gain spectra is
that the maximum gain points do not shift with the intensity of the
plane wave. Instead, they are fixed at the points where k w| | = 1/x m. In
addition, because the Kerr coefficient is negative (n < 02 ), the MI gain
bands only appear in the region where the spectral function (13) has
negative values.
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