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A B S T R A C T

Transmission spectra and coherent optical pulse propagation though a size-imbalanced coupled ring resonator
are investigated, where the size of the first ring is extremely large and has a narrow free-spectral-range with an
extremely high Q-value, and the second ring is small with a moderate Q-value. The system shows characteristic
comb spectra due to interference effects between the two resonators. When an arbitrary-shaped coherent pulse
propagates through this system, a series of oscillating output pulses appears. It is shown that this pulse train
develops into coherent 0π optical pulses.

1. Introduction

Optical resonators have been highly significant in optics and
photonics. The high spectral selectivity provided by resonators has
been used in spectroscopic applications, and their ability to enhance
light–matter interactions demonstrates their potential in nonlinear
optics, as well as quantum manipulation of photons [1]. Besides
traditional applications, there have also been a number of new
developments; optical-mechanical phenomena in micro cavities [2,3],
interaction-free measurements in optical resonators [4], and perfect
absorption in critically coupled resonators [5] are examples where the
unique properties of resonators have been used.

When two resonators are coupled, interference effects provide
further interesting and important characteristics. For example,
coupled-resonator-induced transparency (CRIT) has attracted exten-
sive interest. A coupled resonator can be described as analogous to a Λ-
type three-level atomic system [6–8] and exhibits similar effects to
electromagnetically induced transparency (EIT) in atoms [9]. Slow-
light propagation [10] has been investigated using CRIT. When more
resonators are directly chained, the system is referred to as a coupled
resonator optical waveguide (CROW) [11]. This architecture has been
realised in many different material platforms and various types of
CROW have been proposed. They were conceived as a new technology
for integrated devices, demonstrating potential in applications such as
Sagnac effects [12], slow or stopped light, optical switching [13].

Here, we discuss an unusual coupled resonator, where the size of
the first ring is extremely large, providing a narrow free-spectral-range
(FRS) with an extremely high Q-value [1010], and the second ring is
small with a moderate Q-value [108]. Fig. 1(a) shows schematic

illustration of the size-imbalanced coupled resonator, where R1 and
R2 are the large and small rings, respectively. Our motivation is
illustrated schematically in Fig. 1(b). Recognizing the first ring as a
feedback loop, we reconfigured the system (Fig. 1(a)) as a serial array
of identical ring resonators (Fig. 1(b)). In contrast to CROW systems,
the resonance frequency and Q-value of the resonators in the equiva-
lent system of the serial array of resonators can be set to be identical.
Using this system, we can investigate the propagation of pulses through
a serial array of identical ring resonators. We investigated transmission
spectra and coherent optical pulse propagation through the system.
The spectra showed a characteristic comb structures due to the
interference effect between the first and second resonators. When
coherent optical pulses propagate through this system, a series of
oscillating pulse trains appeared, related to the spectral comb struc-
tures. It is shown that this pulse train develops into coherent 0π optical
pulses. That is, the pulse area, defined by the time integral of the slowly
varying envelope of the electric fields, decayed exactly exponentially to
0π during propagation, independently of the input pulse duration or
the input pulse shape, thus strictly obeying the McCall and Hahn
[14,15] pulse area theorem in a linear regime [16–19]. The unique
feature of the weak coherent 0π pulse is that the decay of the pulse area
does not necessarily imply that the pulses lose their energy. The slowly
varying electric field envelope oscillates between positive and negative
values in such a way that the area theorem is satisfied. Recently, the
development of coherent 0π pulses has been demonstrated successfully
in a ring resonator with a dynamic recurrent loop [20]. In this dynamic
system, a fast optical switch was employed and optical pulses were
injected into the dynamic recurrent loop. Pulse states were examined
after passing through resonators an arbitrary number of times. The
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present coupled resonator could be reorganised as a static version of
the above dynamic system. The differences between the present static
system and the dynamic system are briefly discussed.

2. Size imbalanced coupled resonator and transmission
spectra

Before the analysis of coherent optical pulse propagation, we first
describe the steady state transmission spectra. Fig. 1(a) shows a
schematic illustration of the coupled ring resonator, where the first
ring R1 is large with an extremely high Q-value and the second ring R2 is
small with a moderate Q-value. The steady-state output of the electric
field, E ω( )out , normalised by the incident light electric field E ω( )in , is
described in a similar manner to conventional coupled resonators [21],
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ω is detuning frequency from the resonance of R1 and R2,
x γ ρL= (1 − ) exp( − /2)i i i i

1/2 and y κ= cos( )i i are the loss and coupling
parameters, respectively, ρi is the roundtrip loss, κi is the coupling
strength, and γi is the excess loss. φ ω ωnL c( ) = /i i is the phase shift in the
circulation orbit, Li is the length of the ring resonator and n is the
effective refractive index, i=1, 2 indicates the first and second
resonators, respectively [21]. Note that smaller values of x and y
indicate stronger attenuation and stronger coupling, respectively. In
the present coupled resonator, we consider a situation where the first
ring is large and the free spectral range of the first ring FSR1 satisfies the
relationship FSR δν<1 2, where δν2 is the resonance bandwidth of the
second ring R2. When the ring R2 is decoupled, i.e. y = 12 , the bottom
Tbottom and top Ttop of the comb appear when R1 is on- resonance and off-
resonance, respectively and obtained from Eq. (1) as
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When the ring R2 is coupled, the transmission spectra are modu-
lated by the resonance of the second ring, and exhibit a characteristic
comb structure. We categorize the transmission spectra in four cases,
case [1], [II], [III], and [IV], depending on the coupling conditions in R1
and R2. For convenience, we introduce a renormalized loss parameter
for R1:

x ω x R ω( ) = + ( ).1 1 2 (3)

The renormalized loss includes the loss and phase shift from the
resonance R2. In Case [I], the coupling conditions for both R1 and R2 are
under-coupling conditions, i.e. x y<1 1 and x y<2 2. Fig. 2(a) shows the
transmission spectrum for this case. The inherent loss of R1 is strong
compared with the relevant coupling. As the frequency of the incident
light approaches the resonance of R2, x ω( )1 decreases. The coupling of
R1 further departs from critical coupling, i.e. x ω y( ) < <1 1, which results
in an increase in Tbottom. This means that the depth of the resonance
comb becomes shallow around the resonance frequency of R2. As a
result, the bottom of the envelope function of the comb exhibits a “Λ”-
shaped structure (Fig. 2(a1)). The comb is on resonance at ω=0; that is,
one of the dips in the comb is centred at δω=0 (Fig. 2(a2)). Similarly,
the top of the envelope function shows a shallow dip structure around
the resonance of R2 because Ttop in Eq. (2) decreases as the frequency of
the incident light approaches the resonance of R2. Fig. 2(b) shows the
transmission spectra in case [II], where the coupling conditions for R1
and R2 correspond to under-coupling and over-coupling conditions,
respectively; x y<1 1 and x y>2 2. A “Λ”-shaped transmission spectrum
similar to that in Fig. 2(a1) is obtained. In this case, however, the comb
is off resonance at ω=0, i.e. ω=0 is located at the middle of the
neighbouring two dips of the comb (Fig. 2(b2)). This occurs because
the phase is π rad-shifted when the electric field transmits through the
over-coupled R2.

Next, we consider cases [1II] and [IV], where R1 is prepared in the
over-coupling condition, i.e. x y>1 1. In contrast to the previous cases of
[I] and [II], when the incident light frequency approaches the
resonance of R2, the coupling of R1 approaches critical coupling. The
depth of the resonance comb increases around the resonance of R2.
There are two cases. First, when x ω y( = 0) >1 1, the bottom of the
envelope function of the comb exhibits a “V”-shaped structure
(Fig. 2(c1)). For the second case, x δω y( = 0) <1 1, the bottom of the
envelope function of the comb exhibits a “W”-shaped structure
(Fig. 2(d1)). This “W”-shaped structure appears because R1 passes
the critical coupling condition, i.e. x ω y( ) =1 1, twice when the frequency
is increased across the resonance of R2. The frequency corresponding to
the critical coupling conditions are denoted as w0 in Fig. 2(d1). In case
[III] when R2 is in the under-coupling condition, the comb is off
resonance at ω=0. In case [IV] when R2 is in the over-coupling
condition, the comb is on resonance at ω=0. Therefore, regarding the
coupling condition of R2, a reversed relationship compared to cases [I]
and [II] is observed. Fig. 2(c) and (d) show examples of the transmis-
sion spectra for cases [III] and [IV], where “V” and “W”-shaped
structures appear.

3. Coherent pulse propagation and 0π pulse

We analyse the coherent optical pulse propagation through the size-
imbalanced coupled ring resonator. Arbitrary-shaped coherent pulses
that propagate through this system transform in a series of oscillating
output pulses in a train caused by the comb structures, and the pulse
train develops into a weak coherent 0π optical pulse. We denote the
slowly varying envelope of the electric field of the pulse of input and
output light as E t( )in and E t( )out , respectively. The Fourier transforms
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Fig. 1. (a) Schematic illustration of the size-imbalanced coupled resonator. C1, and C2
are couplers. R1 (blue line) and R2(red line) are the large and small rings, respectively. (b)

Illustration of a conceptual serial array of ring resonators where RA,RB ,RC ,…are ring

resonators with the same resonance frequency and CA,CB,CC ,.., are couplers.
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