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A B S T R A C T

It has been shown that the number of subapertures and the amount of overlap has a significant influence on the
stitching accuracy. In this paper, a non-overlap subaperture interferometric testing method (NOSAI) is
proposed to inspect large optical components. This method would greatly reduce the number of subapertures
and the influence of environmental interference while maintaining the accuracy of reconstruction. A general
subaperture distribution pattern of NOSAI is also proposed for the large rectangle surface. The square Zernike
polynomial is employed to fit such wavefront. The effect of the minimum fitting terms on the accuracy of NOSAI
and the sensitivities of NOSAI to subaperture's alignment error, power systematic error, and random noise are
discussed. Experimental results validate the feasibility and accuracy of the proposed NOSAI in comparison with
wavefront obtained by a large aperture interferometer and stitching surface by multi-aperture overlap-scanning
technique (MAOST).

1. Introduction

The accuracy, reproducibility and efficiency of the measurement
techniques and systems need to be improved with increasing demands
from the optical manufacturing. Subaperture stitching interferometry
plays an important role in large aperture and large NA surface
metrology, including planar, spherical, aspherical and even free-form
surfaces, because it can extend the lateral measurement ranges while
enhancing the lateral and vertical resolutions.

In the early models of stitching interferometry, there was no
overlap between subapertures [1]. In order to improve the stitching
accuracy and achieve high spatial resolutions, multi-aperture overlap-
scanning technique (MAOST) was proposed for high precision large
aperture measurement [2,3]. With MAOST, a large optical surface is
tested by an overlap-scanning sequence with a small aperture inter-
ferometer and then the surface of the full aperture is reconstructed
through the consistency of data in overlapping regions. One recon-
struction approach was to simultaneously make the sum of the squared
differences for all overlapping data minimum to reduce the accumula-
tion error of stitching [4]. In order to improve the accuracy, compensa-
tion using a reference mirror [5] or an iterative algorithm [6] have been
proposed. These approaches have been used for large area measure-
ment of planar [7], cylindrical [8], spherical [9] and aspherical [10]
surfaces. The optimal overlap area for these methods has been shown
to be 30% of the subaperture area [11]. Thus the number of
subapertures will increase with the size of optics. For example, for a

400×800 mm optical flat, 66 subapertures at 30% overlapping ratio are
needed if a 100 mm interferometer is used. Furthermore to ensure
accuracy, the environment and the entire measurement system must be
stable during scanning of these 66 subapertures making it difficult to be
used in a workshop environment [12]. Hence the need arises for fewer
subapertures for reduced environment uncertainty and reduced errors
in the stitching process.

Two methods namely the Kwon-Thunen and Simultaneous fit
[13,14] reconstruct the full aperture using Zernike polynomial with
non-overlapping subapertures but with some differences. In the Kwon-
Thunen method, the subaperture wavefront and full aperture wave-
front are both fitted by a Zernike polynomial and the polynomial
coefficients are solved by minimizing their difference. This method is
more sensitive to the alignment errors of the subapertures. In the
Simultaneous fit approach, the first three Zernike terms, namely piston,
x-tilt and y-tilt, of each subaperture are fitted independently, which can
avoid their impact on the fitting of higher-order terms and with better
computational efficiency. Though both methods suffer from the pro-
blem of describing some wavefronts with localized irregularities with
the Zernike polynomials, they have sufficient precision for testing
relative smooth surfaces, such as planar surfaces. The greatest advan-
tage of this kind of method is the reduction in the number of
subapertures. Using the same optical flat with the size of
400×800 mm as an example, the Kwon-Thunen or Simultaneous fit
method, needs to scan about 32 subapertures saving more than 50%
scanning time. Furthermore, for fewer scanning subapertures, the
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start-up and stop times are also reduced greatly, thus reducing
mechanical errors.

This paper will test the rectangular optical flats with large scales on
the machine tool table in workshop by non-overlap subaperture
interferometric testing method (NOSAI). It introduces the principle
of NOSAI and gives the revised Zernike polynomial suitable for
rectangular shape. The effect of the minimum number of fitting terms
on the accuracy of NOSAI and the sensitivities of NOSAI to subaperture
alignment error, power systematic error, high frequency noise, higher-
order terms of fitted surface and subapertures distribution are dis-
cussed. The experimental system is established with a dynamic
interferometer as the measuring instrument. Experiments verified the
feasibility and accuracy of NOSAI. In Section 2, the basic principle of
NOSAI and square Zernike polynomials is described. In Section 3, a
numerical simulation is given to test the validity and the sensitivities of
the method. In Section 4, experimental verification of NOSAI is shown.

2. Principle of NOSAI

Assuming that the translation between subapertures is rigid and
excluding geometrical errors from the mechanical platform, the
measured wavefront of subapertures should be consistent with the full
aperture wavefront in theory if the interferometer is correctly cali-
brated. According to this principle, the fitting coefficients of piston, tip
and tilt terms of subapertures and the fitting coefficients of the full
aperture wavefront can be solved simultaneously. NOSAI does not
involve positional relationships between subapertures, which mean
that an arbitrary distribution of the subapertures is acceptable, even
without overlap.

The wavefront of the full aperture surface can be expressed as,

∑W x y m Z x y( , ) = ( , )
i

N
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where W x y( , ) is the fitted wavefront of the full aperture and x y( , ) is its
coordinate, Z x y( , )i is the ith fitting polynomial, mi is its coefficient, N is
the total number of polynomial terms. The coefficients of the first three
terms (piston, tip and tilt) are not related to the surface shape and set
to zero in Eq. (1).

If there is only rigid translation between measured subaperture and
full aperture wavefronts, then the residue error R can be calculated as
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where M is the total number of subapertures, w x y( , )k is the measured
wavefront of the kth subaperture, Q x y( , )k is the corresponding weight
value of the kth subaperture at point x y( , ) to separate the useful sampling
points (Q x y( , )=1k ) and the useless sampling points(Q x y( , )=0k ). The
alignment coefficients of kth subaperture relative to the full aperture is
n n n n= ( , , )k k k k1 2 3

T in X x y= (1, , )k k k .
The fitting coefficients of all subapertures are denoted as

S n n n= ( , ,…, )n M1 2
T, and the subaperture coordinates are

X X X X= ( , , …, )M1 2 , the fitting coefficients of the full aperture are
S m m m= ( , ,…, )m N4 5

T, the Zernike polynomial terms
Z Z Z Z= ( , , …, )N4 5 ， the subaperture wavefronts W w w w= ( , , …, )M1 2
with their weights Q Q Q Q= ( , , …, )M1 2 , then Eq. (2) can be rewritten as
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whereH ZX= [ ], V S S= [ ]m n
T .

By minimizingR, the least squares estimate of V is,

V H QH H QWˆ = ( )T T−1 (4)

Thus, the fitting coefficients of full aperture wavefront and align-
ment coefficients of each subaperture can be obtained simultaneously

through a global coordinate synchronization. Thus the impact of
accumulation error and local measurement errors can be reduced.

3. The measurement scheme for rectangular optical flats

For the rectangular plane surface, we attempt to program a general
measurement scheme with the appropriate polynomial and the opti-
mized subaperture distribution. This is more valuable for further
application.

3.1. Square Zernike polynomial

Zernike polynomials are often used to express the wavefronts since
the polynomial terms with the same forms as the aberrations observed
in optical testing. It should be noted that the Zernike polynomials are
orthogonal only over the unit circle. It is convenient to represent a
square or rectangular aperture with 2D set of Legendre polynomials for
its orthogonality, but it does not include the useful rotationally-
symmetric terms, in particular, “power” term, i.e. (x2+y2) [15]. In
ISO/TR14999, orthogonal square Zernike polynomials are built, which
have the same forms as the corresponding classical Zernike polyno-
mials but with different coefficients [16]. Due to the complex interac-
tion between the square area of definition and the rotationally
symmetrical basis of these functions, there is no simple formula for
the polynomial coefficients. They can only be described term by term
using the following expression,

∑ ∑P r mθ Q r mθ{ ( )cos( )}and { ( )sin( )}n n (5)

where (r, θ) are polar coordinates, r x y= +2 2 . The range of x and y is
[- 2 , 2 ], which means half diagonal of the area should be equal to
one. P r( )n and Q r( )n denote polynomials in the variable “r” and the
order of the function is n+m，where n, m are non-negative integers.

The first 11 square Zernike polynomials based on polar symmetry
are given in Table 1. Theoretically, the fitting accuracy can achieve
10−15 by using appropriate terms.

3.2. Compare with normal Zernike polynomial

The most common fitting principle for the rectangular surface is
using polynomials which are derived from Zernike polynomials and
made orthogonal over corresponding apertures. This change should be
fully transparent to the fitting process. A rectangular wavefront is
simulated as Eq. (6) and fitted using two different polynomials, one is
the orthogonalized Zernike polynomials, the other is the square Zernike
polynomials. RMS of the residual surface error is used to illustrate the
fitting accuracy. It could get 10−4 when using the orthogonalized
Zernike polynomials (Fig. 1(a)) and get 10−14 when using the square
Zernike polynomials (Fig. 1(b)). Both of these two polynomials could
get well precision in the simulation with no error introduced. The

Table 1
Square Zernike polynomials [16].

Term Order (n+m) n m Polynomial

Z1 0 0 0 1
Z2 2 1 1 r θcos
Z3 2 1 1 r θsin
Z4 2 2 0 r2 −2/32

Z5 4 2 2 r θcos 22

Z6 4 2 2 r θsin 22

Z7 4 3 1 r r θ(15 −7)cos /52

Z8 4 3 1 r r θ(15 −7)sin /52

Z9 4 4 0 r r2(315 −240 +31)/1054 2

Z10 6 3 3 r θ r r θcos 3 +3 (13 −4)cos /313 2

Z11 6 3 3 r θ r r θsin 3 +3 (4 − 13 )sin /313 2
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