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A B S T R A C T

We consider the motion of a quantum particle in a free space. Introducing an explicit measurement procedure
for velocity, we demonstrate that the measured velocity is related to the group and phase velocities of the
corresponding matter waves. We show that for long distances the measured velocity coincides with the matter
wave group velocity. We discuss the possibilities to demonstrate these effects for the optical pulses in coherently
driven media or for radiation propagating in waveguides.

1. Introduction

The fact that propagation of waves depends on dispersion of the
media has been known for a longtime ago [1,2]. In particular, the speed
of light differs from its value in a vacuum [3] due to the index of
refraction (V V c n= = /ph g , where n is the index of refraction). Due to
dispersion of the index of refraction, the phase and group velocity are
different (V c n V c n ω n ω ω= / ≠ = /( + ∂ ( )/∂ )ph g ). Quantum coherence ef-
fects, such as coherent population trapping (CPT) [4] and electro-
magnetically induced transparency (EIT) [5–8], have been the focus of
a broad range of research activity for the past two decades since they
drastically change the optical properties of the media. In EIT, for
example, absorption practically vanishes in both the CW and the pulsed
regime [6–10]. A medium with an excited quantum coherence,
phaseonium [5], can be used to make an ultra-dispersive prism [11]
which will have several orders of magnitude greater angular spectral
dispersion compared to a conventional one. Also the bending of light
has been demonstrated using a transverse dragging effect [12]. The
corresponding steep dispersion results in the ultraslow (or ultrafast)
propagation of light pulses [13–17]. This in turn will produce huge
optical delays [17] and therefore ultrahigh enhancement in absolute
and relative rotation sensing can be achieved [18].

During last years [3,19], the dispersion properties of light propa-
gating in the media with strong dispersion properties have been in a
focus of broad study. Properties of matter waves is related to the
understanding of the behavior of the quantum objects. Contrary to
optical waves, which do not have any dispersion in vacuum, the matter
waves have very strong dispersion to be taken into account. Here, we

are going to discuss the process of measurement of velocity of a
quantum object, and the role of phase and group velocities of matter
waves on the procedure. Recently, the topic has attracted a lot of
attention because of reports in the press on the detection of neutrino's
traveling faster than the light in vacuum [20]. The results were very
controversial that stimulated broad discussions about the details of
experiments [21].

In this paper, we consider the propagation of the matter waves for
the case of nonrelativistic as well as relativistic quantum mechanics.
But let us note that, in principle, the results are applicable to any
situation where the wave picture can be involved. We show that the
propagation properties of matter waves, namely, the phase and group
velocities are important to determine the measured velocity of the
particle.

2. Velocity measurement

In classical physics, the measurement of velocity of free particle is a
relatively simple procedure. One should determine the initial position
z0 and the position of the object z at the time t. Then, the velocity is
given by

V z z
t

= − ,0
(1)

where V is the measured velocity of the object. It is assumed that it is
possible to repeat the experiment as many times as needed to obtain
the desired accuracy for the velocity.

In quantum physics, we also assume that we can repeat experiment
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as many time as needed to decrease experimental errors. But for the
quantum case, the experimental errors are also related to the funda-
mental postulates of quantum mechanics. In particular, to the fact that
there is an initial spread of the particle position that is related to the
initial width of a wave function. Thus, at time t=0, we have the initial
wave function ψ z( )0 , and later at time t, we have the wave function
ψ z t( , ). Then the measured velocity V is given by

V
ψ z ψ ψ z ψ

t
=

〈 | | 〉 − 〈 | | 〉
,0 0

(2)

where

∫ψ z ψ dz ψ z t z〈 | | 〉 = ( , ) , and
−∞

+∞
2

(3)

∫ψ z ψ dz ψ z z〈 | | 〉 = ( ) .0 0
−∞

+∞

0
2

(4)

3. The matter waves and their dispersion: Schrodinger and
Dirac equations

We consider the wave function describing the behavior of the
matter waves. For the case of nonrelativistic motion, the wave function
is determined by the Schrodinger equation that can be written as

i Ψ
t

H Ψ
m

Ψ∂
∂

= = −
2

∇ .
2

2
(5)

Here, Eq. (5) is written in free space. Let us consider the wave function
in the form of the plane wave

Ψ A ikz iωt= exp[ − ] (6)

being a solution of Eq. (5), where A is the amplitude of the matter wave.
The energy and momentum can be related to the frequency ωand
wavenumber k of matter wave as E ω= and p k= . Then, the energy
is related to the momentum as

E ω k
m

= =
2

,
2 2

(7)

establishing the dispersion of the matter waves. Then, the group
velocity is given by

V k
m

V= =g cl (8)

which coincides with velocity of a classical motion of a particle Vcl, and
the phase velocity is

V k
m

V=
2

=
2

.ph
cl

(9)

For the case of relativistic motion of a particle, the wave function

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
Ψ

ψ
ψ
ψ
ψ

= ,
1

2

3

4

is a spinor, and Ψ obeys the Dirac equation that is given by

i Ψ cα p βmc Ψ∂ = ( → + )t
2 (10)

where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟α σ

σ
β I→ = 0 →

→ 0
, and = 0
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I

⎛
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⎞
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⎛
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⎞
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⎛
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⎞
⎠⎟σ σ i

i
σ= 0 1

1 0 , = 0
− 0 , and = 1 0

0 − 1 .x y z

Looking for a plane wave solution of Eq. (10) as

⎛

⎝
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⎞
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c
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= exp( − ) ,
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Then, the condition for nontrivial solution is given by
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Then, the energy is given by

ω k c m c= +2 2 2 2 4 (16)

and corresponding the phase and group velocities are given by

V c V c m c
k

=
1 +

and = 1 + .g
m c

k

ph
2 2

2 22 2

2 2 (17)

4. Measurement of particle velocity: the role of phase and
group velocities of matter waves

Let us reconsider Eq. (1) in terms of the phase and group velocities
of the matter waves. Now, we assume that the initial position of a
particle has the Gaussian distribution with some initial momentum,
and, then, knowing the dispersion of the matter wave, we can analyze
the behavior of the matter waves later in time.

First, we assume that the initial (at t=0) wave function is

⎛
⎝⎜

⎞
⎠⎟ψ z A z

a
ik z( , 0) = exp −

2
+

2

2 0
(18)

where A π a= 1/ is the normalization constant. Then, we can write the
initial wave function as

⎛
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Note here that

ω k
m

ω
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=
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(20)

and it is useful to write
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m

k k k
m
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Thus, we obtain
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