

Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier.com/locate/optcom

Tao Liu^{a,b}, Qiang Liu^{a,b}, Shuming Yang^{a,b,*}, Zhuangde Jiang^{a,b}, Tong Wang^{a,b}, Xiaokai Yang^{a,b}

^a State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China ^b Collaborative Innovation Center of High-End Manufacturing Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

ARTICLE INFO

Keywords: Subwavelength structures Diffraction Polarization Superresolution Binary optics

ABSTRACT

A new method is proposed for shaping a far-field uniform optical needle based on a regular nanostructured metasurface, viz. high-NA (numerical aperture) micro-Fresnel zone plate (FZP). The designed microstructure is comprised of two planar FZP-fragments with different focal lengths. Delicate interference of diffracted beams results in an optical needle at a required working distance in the post-evanescent field. For a 44.88 µm-diameter microstructure illuminated with a linearly x-polarized beam, a 5.77λ-long uniform optical needle is produced at a distance of 12.88 λ away from the mask surface. The transverse beam sizes are 0.97 λ and 0.39 λ in x and y directions, respectively. The designed result calculated by the vectorial angular spectrum theory is in good agreement with the rigorous electromagnetic calculation using the three-dimensional finite-difference timedomain (3D FDTD) method. The designed microstructure is easy-to-fabricated with required NA and working distance. The proposed method can be readily modified for other polarized beams. These far-field uniform optical needles potentially suit the fields of nanolithography, optical trapping, and microscopy.

1. Introduction

Modulation of a non-diffraction optical beam or a sharp optical needle has been widely studied recently [1-7]. Different methods have been proposed, which can be primarily classified into three kinds, based on a lens refraction system [1,2], a mirror reflection system [3,4], and a nanostructured metallic-film-coated plate (or metasurface) [5-7]. Among these methods, the use of a nanostructured metasurface is more attractive and exhibits unique advantages. The metasurface is a single planar, lens-free focusing structure and it obtains far-field subdiffraction and super-resolution without near-field evanescent waves [8–10]. However, there are still two limitations for this approach [5– 8]. Firstly, focusing light needles by nanostructured metasurfaces is designed from randomly distributed microstructures with a number of annuli and it usually requires time-consuming optimization [5-8,11]. Secondly, the light field behind the metasurface is found to be very sensitive to each annulus and a binary phase-type metasurface may not work properly [12]. The essence of these drawbacks is due to that the optimization design is beginning from an irregular multi-annular structure. Besides, the non-diffraction beams, like Bessel beams and Mathieu beams, are important ways to generate a thin needle of light [13,14]. Catenary optics also paves a new road to realize non-diffraction beams [15,16].

In contrast, a binary amplitude-type Fresnel zone plate (FZP) is considered to be one kind of regular metasurface with defined zone

radii, which suits a variety of applications, e.g. in atomic optics, X-ray nanoscopy, confocal imaging, and synchrotron radiation experiments [17-20]. In this paper, a uniform optical needle is to be modulated based on a binary high-NA (numerical aperture) micro-FZP with a required working distance. The designed microstructure is easy-tofabricated with only a small amount of annuli and a defined numerical aperture. The proposed method can be used for linearly, circularly, or radially polarized beams and the illumination wavelength can be chosen from X-ray to visible.

2. Method

2.1. Fresnel zone plate

For a standard Fresnel zone plate, the radial coordinates of each annulus are determined by [18].

$$r_n = \sqrt{n\lambda f} + n^2 \lambda^2 / 4, \quad n = 0, 1, 2, ..., N,$$
 (1)

where, *f* is the main focal length and *N* is the total annulus number. λ is the light wavelength in the medium where FZP is immersed. $\lambda = \lambda_0 / \eta$. λ_0 is the illumination wavelength and η is the refractive index of the immersion medium. The numerical aperture of a FZP can be defined by NA= $\eta \sin \alpha$. α is the maximum semi-angle of the focused light cone and $\tan \alpha = r_N/f$.

For a given wavelength λ , the relation of f, η , N and NA is

http://dx.doi.org/10.1016/j.optcom.2017.02.031

^{*} Corresponding author at: State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. E-mail address: shuming.yang@xjtu.edu.cn (S. Yang).

Received 3 January 2017; Received in revised form 5 February 2017; Accepted 12 February 2017 0030-4018/ © 2017 Elsevier B.V. All rights reserved.

determined by

$$f = \frac{\lambda N}{2(\eta/\sqrt{\eta^2 - \mathrm{NA}^2} - 1)}.$$
(2)

The diameter of a FZP is $D = 2r_N = 2f \cdot NA/\sqrt{\eta^2 - NA^2}$. According to Eq. (2), for a given working distance (*f*) and a required numerical aperture (NA), the annulus number (*N*) can be obtained. The wavelength and refractive index are usually predefined for a practical problem.

For a binary amplitude-type FZP, the transmission function, t(r) can be described as

$$t(r) = \begin{cases} 1, & r_{2m} < r \le r_{2m+1} \\ 0, & r_{2m+1} < r \le r_{2m+2} \end{cases},$$
(3)

where, m=0, 1, ..., N/2-1 and N is supposed to be an even number. In Eq. (3), the innermost annulus is assumed to be a transmitting zone.

2.2. Microstructure design

The new microstructure is composed of two FZP-fragments with different focal lengths f_1 and f_2 . f_2 slightly shifts f_1 . The main idea is to form a light needle by delicate interference of coherent light beams diffracted from two FZP-fragments.

The construction procedure for the new microstructure is as follows:

Step 1: for a given focal length f_1 and wavelength λ , the radius sequence of the first zone plate is

$$r_{1,n} = \sqrt{n\lambda f_1 + n^2 \lambda^2 / 4}, \quad n = 0, 1, 2, ..., N_1,$$
(4)

where, N_1 is an even number.

Step 2: choose a focal shift Δf ($|\Delta f| \ll f_1$), yielding the second focal length

$$f_2 = f_1 + \Delta f,\tag{5}$$

so, the radius sequence of the second zone plate is produced according to

$$r_{2,m} = \sqrt{m\lambda f_2 + m^2 \lambda^2 / 4}, \quad m = 1, 2, ..., N_2,$$
 (6)

where, N_2 is an even number.

Step 3: select an odd number n_i and an even number n_o , satisfying $1 \le n_i < n_o \le N_i$.

Step 4: divide the radius sequence $\{r_{2,m}\}$ into two sub-sequences, viz. an even sequence $P = \{r_{2,2}, r_{2,4}, \dots, r_{2,N_2}\}$ and an odd sequence $Q = \{r_{2,1}, r_{2,3}, \dots, r_{2,N_2-1}\}$; choose a number $r_{2,i}$ from P, which is the first number larger than r_{1,n_i} ; choose a number $r_{2,o}$ from Q, which is the last number smaller than r_{1,n_o} .

Step 5: replace the sequence $\{r_{1,n_i+1}, r_{1,n_i+2}, \dots, r_{1,n_o-1}\}$ of the first zone plate by $\{r_{2,i}, r_{2,i+1}, r_{2,i+2}, \dots, r_{2,o}\}$ from the second zone plate, resulting in a new radius sequence denoted by $F = \{r_{1,1}, r_{1,2}, \dots, r_{1,n_i}, r_{2,i}, r_{2,i+1}, r_{2,i+2}, \dots, r_{2,o}, r_{1,n_o}, r_{1,n_o+1}, r_{1,n_o+2}, \dots, r_{1,N_1}\}$, corresponding to a new microstructure.

Step 6: the transmission function t(r) for the new microstructure is a piecewise function: $t(0 \le r < r_{1,n_i}) = 0$, corresponding to a centerobstructed circle; $t(r_{1,n_i} \le r < r_{2,i}) = 1$, corresponding to the first transmitting annulus; from r_{1,n_i} to the outmost radius r_{1,N_1} , the transmissions are consecutively varying from 0 to 1.

So, a new microstructure composed of two FZP-segments has been constructed from the above procedure, as shown in Fig. 1. There are three areas comprising this new microstructure. In the center, a centerOptics Communications 393 (2017) 72-76

Fig. 1. Schematic diagram of focusing a light needle by the designed microstructure illuminated with an x-polarized LPB.

obstructed circle is assumed to block the paraxial beams in order to sharpen the transverse beam size and extend the axial beam size. In the middle, a FZP-segment related with f_2 is intentionally inserted into another FZP-segment related with f_1 . In the constructed microstructure, there are two FZP-fragments, as shown in Fig. 1. One is related with f_1 and the other with f_2 . So, according to Eq. (1) and the construction procedure, all radial widths of the rings are rigorously different. As high-NA micro-FZPs are used, the polarization effect should be considered [11,12]. Here, the vectorial angular spectrum (VAS) theory is used to describe the electric field of light behind the microstructure [11,12,21]. Parameters $\{n_i, n_o, \Delta f\}$ are adjusted to precisely modulate a uniform light needle. They can be accurately determined using a suitable optimization program, e.g. genetic algorithm [11,12,21]; however, it is found through calculations that they can be quickly set only by a small refining program with several trials.

2.3. Calculation of the light field

According to the VAS theory, the integral representations for the electric field behind a multi-annular microstructure are briefly outlined for a linearly polarized beam (LPB) below [12]. Integral representations for a circularly or a radially polarized beam can be found in [11,12].

For an x-polarized LPB normally illuminating a planar microstructure, as shown in Fig. 1, components of the electric field *E* for any point $P(r, \varphi, z)$ in the observation plane (z > 0) are described as

$$\begin{cases} E_x(r, z) = \int_0^\infty A_0(l) \exp[j2\pi q(l)z] J_0(2\pi lr) 2\pi ldl \\ E_y(r, z) = 0 \\ E_z(r, \varphi, z) = -j \cos \varphi \int_0^\infty \frac{l}{q(l)} A_0(l) \exp[j2\pi q(l)z] J_1(2\pi lr) 2\pi ldl \end{cases}$$
(7)

where, $q(l) = (1/\lambda^2 - l^2)^{1/2}$ and l is the radial spatial frequency component. J_0 and J_1 are the zeroth and first order Bessel functions of the first kind, respectively. $A_0(l)$ in Eq. (7) is expressed as $A_0(l) = \int_0^\infty t(r)g(r)J_0(2\pi lr)2\pi r dr$. t(r) and g(r) denote the transmission function of the microstructure and the amplitude distribution of the illumination beam, respectively. g(r) = 1 has been assumed here. The total electric energy density (or light intensity) is calculated by $I(r, \varphi, z) = |\mathbf{E}(r, \varphi, z)|^2 = |E_x(r, z)|^2 + |E_z(r, \varphi, z)|^2$. A fast Hankel transform algorithm is programmed to fundamentally accelerate the calculation of Eq. (7) [11,12], which assures the efficient design of microstructures. For an x-polarized LPB, the longitudinally polarized component E_y is naught in the y direction. So, it can be implied that the light beam in the x direction will be generally wider than that along the y direction.

Download English Version:

https://daneshyari.com/en/article/5449445

Download Persian Version:

https://daneshyari.com/article/5449445

Daneshyari.com