Shaping a far-field optical needle by a regular nanostructured metasurface

Tao Liu ${ }^{\mathrm{a}, \mathrm{b}}$, Qiang Liu ${ }^{\mathrm{a}, \mathrm{b}}$, Shuming Yang ${ }^{\mathrm{a}, \mathrm{b}, *}$, Zhuangde Jiang ${ }^{\mathrm{a}, \mathrm{b}}$, Tong Wang ${ }^{\mathrm{a}, \mathrm{b}}$, Xiaokai Yang ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
${ }^{\text {b }}$ Collaborative Innovation Center of High-End Manufacturing Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China

A R T I C L E I N F O

Keywords:

Subwavelength structures
Diffraction
Polarization
Superresolution
Binary optics

Abstract

A new method is proposed for shaping a far-field uniform optical needle based on a regular nanostructured metasurface, viz. high-NA (numerical aperture) micro-Fresnel zone plate (FZP). The designed microstructure is comprised of two planar FZP-fragments with different focal lengths. Delicate interference of diffracted beams results in an optical needle at a required working distance in the post-evanescent field. For a $44.88 \mu \mathrm{~m}$-diameter microstructure illuminated with a linearly x-polarized beam, a 5.77λ-long uniform optical needle is produced at a distance of 12.88λ away from the mask surface. The transverse beam sizes are 0.97λ and 0.39λ in x and y directions, respectively. The designed result calculated by the vectorial angular spectrum theory is in good agreement with the rigorous electromagnetic calculation using the three-dimensional finite-difference timedomain (3D FDTD) method. The designed microstructure is easy-to-fabricated with required NA and working distance. The proposed method can be readily modified for other polarized beams. These far-field uniform optical needles potentially suit the fields of nanolithography, optical trapping, and microscopy.

1. Introduction

Modulation of a non-diffraction optical beam or a sharp optical needle has been widely studied recently [1-7]. Different methods have been proposed, which can be primarily classified into three kinds, based on a lens refraction system [1,2], a mirror reflection system [3,4], and a nanostructured metallic-film-coated plate (or metasurface) [57]. Among these methods, the use of a nanostructured metasurface is more attractive and exhibits unique advantages. The metasurface is a single planar, lens-free focusing structure and it obtains far-field subdiffraction and super-resolution without near-field evanescent waves [8-10]. However, there are still two limitations for this approach [58]. Firstly, focusing light needles by nanostructured metasurfaces is designed from randomly distributed microstructures with a number of annuli and it usually requires time-consuming optimization [5-8,11]. Secondly, the light field behind the metasurface is found to be very sensitive to each annulus and a binary phase-type metasurface may not work properly [12]. The essence of these drawbacks is due to that the optimization design is beginning from an irregular multi-annular structure. Besides, the non-diffraction beams, like Bessel beams and Mathieu beams, are important ways to generate a thin needle of light [13,14]. Catenary optics also paves a new road to realize non-diffraction beams $[15,16]$.

In contrast, a binary amplitude-type Fresnel zone plate (FZP) is considered to be one kind of regular metasurface with defined zone
radii, which suits a variety of applications, e.g. in atomic optics, X-ray nanoscopy, confocal imaging, and synchrotron radiation experiments [17-20]. In this paper, a uniform optical needle is to be modulated based on a binary high-NA (numerical aperture) micro-FZP with a required working distance. The designed microstructure is easy-tofabricated with only a small amount of annuli and a defined numerical aperture. The proposed method can be used for linearly, circularly, or radially polarized beams and the illumination wavelength can be chosen from X-ray to visible.

2. Method

2.1. Fresnel zone plate

For a standard Fresnel zone plate, the radial coordinates of each annulus are determined by [18].
$r_{n}=\sqrt{n \lambda f+n^{2} \lambda^{2} / 4}, \quad n=0,1,2, \ldots, N$,
where, f is the main focal length and N is the total annulus number. λ is the light wavelength in the medium where FZP is immersed. $\lambda=\lambda_{0} / \eta . \lambda_{0}$ is the illumination wavelength and η is the refractive index of the immersion medium. The numerical aperture of a FZP can be defined by $\mathrm{NA}=\eta \sin \alpha . \alpha$ is the maximum semi-angle of the focused light cone and $\tan \alpha=r_{N} / f$.

For a given wavelength λ, the relation of f, η, N and NA is

[^0]http://dx.doi.org/10.1016/j.optcom.2017.02.031
Received 3 January 2017; Received in revised form 5 February 2017; Accepted 12 February 2017
0030-4018/ © 2017 Elsevier B.V. All rights reserved.
determined by
$f=\frac{\lambda N}{2\left(\eta / \sqrt{\eta^{2}-\mathrm{NA}^{2}}-1\right)}$.
The diameter of a FZP is $D=2 r_{N}=2 f \cdot \mathrm{NA} / \sqrt{\eta^{2}-\mathrm{NA}^{2}}$. According to Eq. (2), for a given working distance (f) and a required numerical aperture (NA), the annulus number (N) can be obtained. The wavelength and refractive index are usually predefined for a practical problem.

For a binary amplitude-type FZP, the transmission function, $t(r)$ can be described as
$t(r)=\left\{\begin{array}{ll}1, & r_{2 m}<r \leq r_{2 m+1} \\ 0, & r_{2 m+1}<r \leq r_{2 m+2}\end{array}\right.$,
where, $m=0,1, \ldots, N / 2-1$ and N is supposed to be an even number. In Eq. (3), the innermost annulus is assumed to be a transmitting zone.

2.2. Microstructure design

The new microstructure is composed of two FZP-fragments with different focal lengths f_{1} and $f_{2} . f_{2}$ slightly shifts f_{1}. The main idea is to form a light needle by delicate interference of coherent light beams diffracted from two FZP-fragments.

The construction procedure for the new microstructure is as follows:

Step 1: for a given focal length f_{1} and wavelength λ, the radius sequence of the first zone plate is
$r_{1, n}=\sqrt{n \lambda f_{1}+n^{2} \lambda^{2} / 4}, \quad n=0,1,2, \ldots, N_{1}$,
where, N_{1} is an even number.
Step 2: choose a focal shift $\Delta f\left(|\Delta f| \ll f_{1}\right)$, yielding the second focal length
$f_{2}=f_{1}+\Delta f$,
so, the radius sequence of the second zone plate is produced according to
$r_{2, m}=\sqrt{m \lambda f_{2}+m^{2} \lambda^{2} / 4}, \quad m=1,2, \ldots, N_{2}$,
where, N_{2} is an even number.
Step 3: select an odd number n_{i} and an even number n_{o}, satisfying $1 \leq n_{i}<n_{o} \leq N_{1}$.
Step 4: divide the radius sequence $\left\{r_{2, m}\right\}$ into two sub-sequences, viz. an even sequence $P=\left\{r_{2,2}, r_{2,4}, \ldots, r_{2, N_{2}}\right\}$ and an odd sequence $Q=\left\{r_{2,1}, r_{2,3}, \ldots, r_{2, N_{2}-1}\right\}$; choose a number $r_{2, i}$ from P, which is the first number larger than $r_{1, n_{i}}$; choose a number $r_{2, o}$ from Q, which is the last number smaller than $r_{1, n_{0}}$.
Step 5: replace the sequence $\left\{r_{1, n_{i}+1}, r_{1, n_{i}+2}, \ldots, r_{1, n_{o}-1}\right\}$ of the first zone plate by $\left\{r_{2, i}, r_{2, i+1}, r_{2, i+2}, \ldots, r_{2, o}\right\}$ from the second zone plate, resulting in a new radius sequence denoted by $F=\left\{r_{1,1}, r_{1,2}, \ldots, r_{1, n_{i}}, r_{2, i}, r_{2, i+1}, r_{2, i+2}, \ldots, r_{2, o}, r_{1, n_{o}}, r_{1, n_{o}+1}, r_{1, n_{o}+2}, \ldots, r_{1, N_{1}}\right\}$, corresponding to a new microstructure.
Step 6: the transmission function $t(r)$ for the new microstructure is a piecewise function: $t\left(0 \leq r<r_{1, n_{i}}\right)=0$, corresponding to a centerobstructed circle; $t\left(r_{1, n_{i}} \leq r<r_{2, i}\right)=1$, corresponding to the first transmitting annulus; from $r_{1, n_{i}}$ to the outmost radius $r_{1, N_{1}}$, the transmissions are consecutively varying from 0 to 1 .

So, a new microstructure composed of two FZP-segments has been constructed from the above procedure, as shown in Fig. 1. There are three areas comprising this new microstructure. In the center, a center-

Fig. 1. Schematic diagram of focusing a light needle by the designed microstructure illuminated with an x-polarized LPB.
obstructed circle is assumed to block the paraxial beams in order to sharpen the transverse beam size and extend the axial beam size. In the middle, a FZP-segment related with f_{2} is intentionally inserted into another FZP-segment related with f_{1}. In the constructed microstructure, there are two FZP-fragments, as shown in Fig. 1. One is related with f_{1} and the other with f_{2}. So, according to Eq. (1) and the construction procedure, all radial widths of the rings are rigorously different. As high-NA micro-FZPs are used, the polarization effect should be considered [11,12]. Here, the vectorial angular spectrum (VAS) theory is used to describe the electric field of light behind the microstructure [11,12,21]. Parameters $\left\{n_{i}, n_{o}, \Delta f\right\}$ are adjusted to precisely modulate a uniform light needle. They can be accurately determined using a suitable optimization program, e.g. genetic algorithm [11,12,21]; however, it is found through calculations that they can be quickly set only by a small refining program with several trials.

2.3. Calculation of the light field

According to the VAS theory, the integral representations for the electric field behind a multi-annular microstructure are briefly outlined for a linearly polarized beam (LPB) below [12]. Integral representations for a circularly or a radially polarized beam can be found in [11,12].

For an x-polarized LPB normally illuminating a planar microstructure, as shown in Fig. 1, components of the electric field \boldsymbol{E} for any point $P(r, \varphi, z)$ in the observation plane $(z>0)$ are described as
$\left\{\begin{array}{l}E_{x}(r, z)=\int_{0}^{\infty} A_{0}(l) \exp [\mathrm{j} 2 \pi q(l) z] J_{0}(2 \pi l r) 2 \pi l d l \\ E_{y}(r, z)=0 \\ E_{z}(r, \varphi, z)=-\mathrm{j} \cos \varphi \int_{0}^{\infty} \frac{l}{q(l)} A_{0}(l) \exp [\mathrm{j} 2 \pi q(l) z] J_{1}(2 \pi l r) 2 \pi l d l\end{array}\right.$,
where, $q(l)=\left(1 / \lambda^{2}-l^{2}\right)^{1 / 2}$ and l is the radial spatial frequency component. J_{0} and J_{1} are the zeroth and first order Bessel functions of the first kind, respectively. $A_{0}(l)$ in Eq. (7) is expressed as $A_{0}(l)=\int_{0}^{\infty} t(r) g(r) J_{0}(2 \pi l r) 2 \pi r d r . t(r)$ and $g(r)$ denote the transmission function of the microstructure and the amplitude distribution of the illumination beam, respectively. $g(r)=1$ has been assumed here. The total electric energy density (or light intensity) is calculated by $I(r, \varphi, z)=|\boldsymbol{E}(r, \varphi, z)|^{2}=\left|E_{x}(r, z)\right|^{2}+\left|E_{z}(r, \varphi, z)\right|^{2}$. A fast Hankel transform algorithm is programmed to fundamentally accelerate the calculation of Eq. (7) [11,12], which assures the efficient design of microstructures. For an x-polarized LPB, the longitudinally polarized component E_{y} is naught in the y direction. So, it can be implied that the light beam in the x direction will be generally wider than that along the y direction.

https://daneshyari.com/en/article/5449445

Download Persian Version:

https://daneshyari.com/article/5449445

Daneshyari.com

[^0]: * Corresponding author at: State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi’an, Shaanxi 710049, China.

 E-mail address: shuming.yang@xjtu.edu.cn (S. Yang).

