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A B S T R A C T

We study the effect of linear coupling on nonlinear phase noise in two-core fibers (TCFs). Considering the
elementary TCF switching process, we demonstrate reduction of nonlinear phase noise in the propagation of
optically amplified pulses through TCFs. Our results show that the reduction occurs just when the first
maximum transfer of optical power is carried out between the TCF cores.

1. Introduction

While single-core fiber (SCF) networks are gradually approaching
their theoretical capacity limits [1], new types of fibers such as multi-
core fibers (MCFs) have been the focus of worldwide research to
overcome critical transmission capacity barriers and boost the cap-
ability of modern optical fiber communication (OFC) systems [2]. This
is so because their signal-carrying capacity is many times greater than
that of traditional SCFs. In MCFs, a number of cores is introduced at
different positions, in a preselected array, in the fiber cross-section and
within a single cladding. In the most typical case, each core accom-
modates a single guided mode, depending on the size of the MCF cores
and some other design parameters, but there may be a number of
guided modes [2,3]. MCFs have attracted attention for enhancing the
capacity of OFC systems through space-division multiplexing (SDM)
[3], and several experiments have demonstrated high-speed data
transmission over MCFs at rates that approach a petabit per second
[4–6]. However, when we consider a MCF as a medium for SDM
transmission, the linear coupling between cores is a key feature to be
considered and analyzed [7,8]. Therefore, before MCFs become a
practical solution, the linear coupling effect in MCFs needs to be
studied theoretically and experimentally because co-propagating
modes in such fibers can interact both linearly and nonlinearly [8].

Essential to SCF-OFC systems is the use of optical amplifiers to
compensate losses due to material absorption and scattering [9].
However, the process of optical amplification introduces amplified

spontaneous emission (ASE) noise in the transmitted optical signal
fields [9]. The field amplitude fluctuations caused by the ASE noise are
translated into phase fluctuations, nonlinear phase noise, because of
the SCF nonlinearity [10]. Specifically, the SCF nonlinearity refers to
the phenomenon of self-phase modulation (SPM), which originates
from the variation of the refractive index of the guided medium
dependent of the launched power. SPM causes the signal field to
change its own phase through a nonlinear phase shift [11]. The
nonlinear phase noise is detrimental in SCF-OFC systems based on
modulation schemes in which the information is encoded in the optical
phase, leading to bit errors in transmission and limiting the regenera-
tion transmission distance [10]. Therefore, it is expected that this
limitation is extended to MCFs described as a collection of coupled
SCFs.

In this work, we describe how the linear coupling in a two-core fiber
(TCF) affects the nonlinear phase noise of initial amplified optical
pulses. For this purpose, the analysis of unchirped Gaussian input
pulses and the elementary TCF switching process were sufficient and
useful to obtain considerable and comprehensive results. We focus on a
TCF, which is the simplest, but most important, setup of MCFs to
obtain physical insight of the effect of linear coupling on nonlinear
phase noise. We consider the TCF system because it is the workhorse of
the field of MCFs for exploring those aspects that more complex
systems as MCFs would not be able to see. We neglect the effect of the
initial chirp because the performance of the TCF changes minimally
when chirped Gaussian input pulses are considered.
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2. Nonlinear coupled-mode equations and their analytic
solution

Let us begin by considering a symmetric TCF with identical fiber
cores of radius a, separated by a distance d between their centers. The
TCF consists of a launch fiber core coupled with an unlaunch fiber core.
The launch fiber core is a fiber core that is initially pumped with an
optical pulse and the unlaunch fiber core is not initially pumped. We
are considering the simplest situation in which a single-input pulse is
launched into one TCF core such that it excites a single transverse
electric polarization mode of that TCF core. To neglect the dispersive
effects and focus in the analysis of the effect of linear coupling on
nonlinear phase noise, we consider the propagation of picosecond
pulses through the TCF. Introducing the dispersion length in the usual
way as L T β= /| |D 0

2
2 [11], where T0 is the pulse width and β2 is the

group-velocity dispersion parameter, the nonlinear coupled-mode
equations for optical pulses, wide enough that LD is much larger than
the TCF length L, propagating in a lossless TCF are given by [12].
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where U z T( , )1 and U z T( , )2 are the normalized slowly varying ampli-
tudes, L γP= ( )NL 0

−1 is the nonlinear length, P0 is the peak power of the
input optical pulse, and γ is the nonlinear parameter of each TCF core.
The factor i = −1 represents the imaginary unit. Here we are
considering that the modes in the TCF cores are perfectly matched.
The time T t z v= − / g is measured in a frame of reference moving with
the optical pulse at the group velocity vg, and z is the standard notation
for the propagation distance. The coupling coefficient κ and cross-
phase modulation (XPM) parameter b, which represent the linear and
nonlinear coupling coefficients, respectively, depend on the distance d
between the TCF cores, and are given by [13].
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where Δ is the relative core-cladding index difference, K W( )1 is the
modified Bessel function of the second kind of order 1, V is the
waveguide parameter, U and W are the normalized transverse wave-
numbers, and

w a V V= (0.65 + 1.619 + 2.879 ).−3/2 −6 (4)

is the width parameter [11]. To obtain Eq. (3), we have used the
definition of the XPM parameter [12] and the Gaussian approximation
for the spatial distribution of the fundamental mode of each TCF core.
Although the value of b is quite weak and could be zero, we consider b
in our calculations for more general situations where b can not be
neglected.

The complex slowly varying amplitude U z T( , )j of the jth TCF core
(with j=1,2) has an instantaneous optical power of P z T( , )j . Both optical
powers, P z T( , )1 and P z T( , )2 , can vary along L because of the overlap of
the two modes. Using amplitude and phase terms, we can represent to
the slowly varying amplitudes as [14]
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where u z T( , ) is a real function and ϕ z T( , )NLj is the nonlinear phase
shift of a picosecond pulse propagating inside the jth TCF core. Here we
are considering the specific case in which all the input power is initially
launched into one TCF core (i.e., U T(0, ) = 02 at any time). Therefore,
initial conditions are such that u T(0, ) = 1 and ϕ T(0, ) = 0NLj for each
time element. Using the above relation [Eq. (5)] and elliptic integrals,
we can analytically solve Eqs. (1a) and (1b). Two kind of solutions of

Eqs. (1a) and (1b), that satisfy the initial conditions, are available [14].
Solution 1:

u z T κz m( , ) = cn(2 | ),1 (6a)
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where k1 is an integer that depends on the argument and period of the
Jacobian elliptic function κz mdn(2 | )1 . For this case, the modulus
m T b U T κL( ) = [( − 1)| (0, ) | /4 ]NL1 1

2 2 is a time dependent parameter.
Solution 2:
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where k2 is defined by the argument and period of the Jacobian elliptic
function z U T b L msn[ | (0, ) | ( − 1)/(2 )| ]NL1

2
2 . In this case, the modulus

m T κL b U T( ) = [4 /( − 1)| (0, ) | ]NL2 1
2 2 is a time dependent parameter as

well. Note that m m= 1/1 2.
The values of κ and P0 for which m = 11 and m = 12 are defined as

the critical coupling coefficient κc and critical power Pc, respectively.
These two parameters play an important role because they define a
boundary between the two possible solutions (Solutions 1 and 2) of
Eqs. (1a) and (1b). On one hand, Solution 1, which defines the Linear
Regime of a TCF, applies when κ κ≤ < ∞c or/and the input peak power
is low ( P P0 < ≤ c0 ). It is well-known that in this case, both P z T( , )1 and
P z T( , )2 vary sinusoidally with z for any directional coupler. On the
other hand, Solution 2, which defines the Nonlinear Regime of a TCF,
applies when κ κ0 < ≤ c or/and the input peak power is high
(P P≤ < ∞c 0 ); resulting into a reduction in the power exchange
efficiency, i.e., the linear coupling effect is reduced and the optical
field remains primarily in the launch TCF core. In general, Solutions 1
and 2 form a complete solution of the system for all values of κ and P0.

3. Effect of linear coupling on nonlinear phase noise

Let us now consider an optical signal launched into one TCF core
immediately after its amplification by an in-line optical amplifier. The
total electric field envelope after the amplifier can be expressed
mathematically as follows

U T s T n T(0, ) = (0, ) + (0, ),1 1 1 (8)

where s T(0, )1 is the input signal field given by
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and n T(0, )1 is the time-dependent noise field added by the amplifier
due to spontaneous emission. Typically n T(0, )1 is much smaller than
s T(0, )1 at any time. As a result, the electric field envelope U T(0, )1 is
randomly varying in time, and its propagation through a TCF becomes
a random process. The complex amplitude noise n T(0, )1 , which has
both the in-phase and quadrature components, is a statistically
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