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A B S T R A C T

The magnetic field control of spontaneous emission in a four-level atomic system driven by three fields is
studied. Using the iterative method, an analytical expression of the spontaneous emission spectrum is obtained.
Given that the dipoles of the two transitions from two upper levels to a common lower level are orthogonal, we
discuss the influence of the magnetic field which is used to couple the two upper levels on the spontaneous
emission spectrum, and find a conversion between destructive and constructive quantum interference by
changing Larmor frequency. When introducing the interference between the two transitions, the extremely
narrow spectral line is obtained in the emission spectrum, which has a potential application in the high spatial
resolution sub-wavelength atom localization.

1. Introduction

The control of spontaneous emission via atomic coherence or
quantum interference has attracted much attention for many years [1–
7] due to its potential applications in short-wavelength lasers, atom
localization, and quantum information processing. An efficient way to
achieve control is to drive the atom with external fields. The quantum
interference between spontaneous decay processes from two levels
which are driven to another level by a coherent field was investigated
by Zhu and Scully [1]. The destructive interference leads to the
elimination of a spectral line and cancellation of spontaneous emission
in the steady state. For the same four-level atom, Paspalakis and
Knight [2] studied the phase control of spontaneous emission con-
sidering the atom driven by two laser fields with equal frequencies.
Effects such as extreme spectral narrowing and total cancellation of
fluorescence decay were obtained. Replacing the two laser fields by
three coherent fields, Ghafoor et al.[3] studied the amplitude and phase
control of spontaneous emission under three driving fields which form
a loop. A wide variety of spectral behaviors can be obtained by
controlling the phase and amplitude of the driving fields considering
the orthogonal dipoles for two transitions from two upper levels to a
common lower level.

In the four-level atomic system with three external fields, the two
dipoles associated with the transitions from two upper levels to a
common lower level are orthogonal, which means that there is no
quantum interference between the two transitions. The question arises,
therefore, how the quantum interference between the two transitions

could be introduced, and how would it influence spontaneous emis-
sion? In this paper, for a four-level atom driven by three external fields
with a loop, we introduce the quantum interference between the two
transitions from two upper levels to a lower level into the controlling of
spontaneous emission. Motivated by the magnetic field induced
coherence effect [8,9], when a coherent magnetic field is used to couple
the two upper levels we can obtain the parallel dipoles for the two
transitions. The influence of magnetic field and the quantum inter-
ference effect between the two transitions on spontaneous emission
spectrum is discussed.

2. Theoretical model and equations

We consider a system of a four-level atom interacting with three
coherent fields as shown in Fig. 1(a). These fields resonantly couple the
transitions, and form a closed loop. The ground level 0 is coupled to
the excited levels 1 and 2 by two laser field Ω1 and Ω2, where
Ω Ω e= iϕ

2 2 , ϕ is the collective phase of the three fields. The transition
2 → 1 is coupled by a coherent magnetic field with the Larmor
frequency Ω μ B= ⇀ ⋅⎯⇀/ℏB 21 , where μ⇀21 is the magnetic dipole moment.
Therefore, the transition 2 → 1 is electric dipole forbidden while
magnetic dipole allowed. The upper levels 1 and 2 decay to the lower
level c by interacting with the vacuum field modes. According to
dressed state theory, the levels 0 ,1 , 2 and the corresponding fields
can be replaced by two groups of dressed levels + 1,0 1, − 1 and
+ 2,0 2, − 2. The level scheme in terms of dressed states is given in
Fig. 1(b).
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Under the rotating-wave approximation, the interaction
Hamiltonian for the system reads(ℏ = 1)
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where ak is annihilation operator of the k − th vacuum mode, g k1 and g k2
are the coupling constants between the k − th mode and the corre-
sponding atomic transitions. Here, ω c1 and ω c2 are the transitions
frequencies from levels 1 , 2 to c , respectively.

At any time t , the atom-fields state vector can be written as

∑ψ t a t a t a t c t c( ) = ( ) 0, 0 + ( ) 1, 0 + ( ) 2, 0 + ( ) , 1
k

k k0 1 2
(2)

where the probability amplitude a t i( )( = 0, 1, 2)i represents the state of
atom at time t , c t( )k is the probability amplitude that the atom is in level
c with one photon emitted spontaneously into the k − th vacuum
mode. Substituting the Hamiltonian and wave function into the time-
dependent Schrodinger equation, the equations of motion for the
probability amplitudes read
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where Ω Ω e= iϕ
2 2 , Γ π g D ω i= 2 ( )( = 1, 2)i ik k

2 are the spontaneous
decay rates of the two upper levels 1 and 2 , and D ω( )k is the density
of modes at frequency ωk in vacuum; p denotes the alignment of the
two dipole moment matrix elements(p μ μμ μ≡ ⋅ /( )c c c c1 2 1 2 ). By using
the Laplace transform method and considering the system initially in
the ground state 0 we obtain
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sb s ig a s iδ iω ig a s iδ iω( ) = − ( − − /2) − ( − + /2)k k k k k1 1 21 2 2 21 (4d)

where δ ω ω ω= − − /2k k c1 21 , and a population conserving change of
variable b t c t e( ) = ( )k k

iδ t− k has been made. From Eq.4(a)-(c) we can get
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From Eq.(5) we can not express get a s( )1 and a s( )2 directly.
However, setting a s A s M s( ) = ( )/ ( )10 and a s E s N s( ) = ( )/ ( )20 , and using
the iterative method [10,11] once in Eq. (5) we obtain
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By utilizing the final-value theorem for c t( )k we obtain in the long-
time limit:
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The spontaneous emission spectrum S ω( )k is given by
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3. Results and discussion

Firstly, considering p = 0 implies that there is no quantum inter-
ference between the transitions c1 → and c2 → . The total
spontaneous emission spectrum is a non-coherent superposition of
the spectrum associated with transitions c1 → and c2 → .
According to dressed state theory, each transition from a dressed state
to c corresponds to a resonant peak, therefore, we can get two groups
of resonant peaks in the emission spectrum, and each of the groups
involves three resonant peaks. The left part of the emission spectrum is
associated with the transition c1 → while the right part is associated
with the transition c2 → . From Fig. 2(a) we find that spontaneous
emission is eliminated when ϕ = 0, and the central peak is suppressed
completely. In this case, only four resonant peaks exist in the emission
spectrum. For ϕ π= /2 the suppression of spontaneous emission
disappears, and the spectrum shows six resonant peaks. As the phase
ϕ varies from 0(π /2) to π( π3 /2), the emission spectrum is a mirror
image of the spectrum of ϕ = 0(ϕ π= /2).

Next, we turn our attention to the estimation of influence of the
coupled magnetic field on spontaneous emission. When Ω = 0.5B , the
emission spectrum associated with the transition c1 → shows three
peaks as displayed in Fig. 3(a). It is an interesting phenomenon that a
dark line(the zero value in the emission spectrum)[2,12,13] occurs in
the corresponding spectrum associated with the transition c2 → .
The dark line means that there is a destructive interference effect
between c+ →2 , c0 →2 and c− →2 . In the following, we
give an analytical condition for the appearance of the dark line. The

Fig. 1. Schematic diagrams, (a) four-level atomic system driven by three fields, (b) the
atomic energy levels in the dressed state picture.
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