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A B S T R A C T

A compact simplified algorithm for digital detection of the amplitude and phase of the interferometric signal
delivered by a two-wave interferometer with sinusoidal phase modulation is presented. The algorithm consists
of simple mathematical combinations of four frames obtained by integration by a camera of the time-varying
intensity in an interference pattern during the four successive quarters of the modulation period. The algorithm
is invariant by circular permutation of the four image frames. Any set of four consecutive frames can be used for
the calculations, which simplifies the practical implementation of the method. A numerical simulation has been
carried out to evaluate the efficiency of the algorithm for fringe envelope extraction in low-coherence
interferometry. A theoretical analysis of the effect of noise in phase map calculation is conducted. A comparison
with the conventional sinusoidal phase-shifting algorithm is made.

1. Introduction

Phase-shifting interferometry is a powerful means of analyzing
interferograms obtained from interferometric systems [1–4]. Many
phase-shifting algorithms have been developed to measure the optical
wavefront from several interference fringe patterns acquired with an
area camera [5–16]. Several phase-shifting algorithms have also been
developed for digital fringe envelope detection in white-light scanning
interferometry [17–21]. Combined with a procedure for determining
the position of the fringe envelope peak or associated with phase
measurements, this method enables sample surface topography mea-
surements with theoretically unlimited height range. Tomographic
imaging of semi-transparent samples can also be achieved using
white-light (low-coherence) interferometry. In the technique referred
to as full-field optical coherence microscopy (also termed full-field
optical coherence tomography), tomographic images are usually ob-
tained by extraction of the fringe envelope using phase-shifting
methods [22–26].

In all phase-shifting methods, a phase shift is introduced in the
interferometer and several interferometric images are acquired.
Usually, a temporal phase shift is introduced and the images are
acquired sequentially. Interferometric systems have also been devel-
oped to produce and acquire several phase-shifted images simulta-
neously [27–31]. The most common technique to generate the required
phase shift consists of displacing a reference reflector in the inter-
ferometer using a piezoelectric transducer (PZT). The phase shift can
be obtained by other means such as by changing the polarization state

of light [32–34], by using a photoelastic phase modulator [35], or a
spatial light modulator [36].

In the phase-stepping method, the phase is stepped by a known
amount between the acquisitions of the interferometric images. This
method is limited in operation speed by the response time of the phase
modulator to a step-function driving signal, which may be a real
limitation when the phase shift is generated by a mechanical displace-
ment.

In the so-called "integrating-bucket" method, the interferometric
images are acquired while the phase is being shifted continuously. The
bandwidth limitation of stepped phase-shift methods is then signifi-
cantly reduced, enabling higher operation speed. In this method, the
phase is usually shifted linearly in a sawtoothlike manner, and several
integrated interferometric images (or ‘‘buckets’’) are recorded by the
camera. Phase-shifting interferometry that uses sinusoidal phase
modulation is less usual. An algorithm with sinusoidal phase modula-
tion and four integrating buckets was initially proposed for phase
measurements [7] and applied to surface topographic measurements
[7,37]. This algorithm was extended to fringe envelope detection [35]
and used in full-field optical coherence microscopy [38–40]. More
recently, it was implemented in a line-scanning optical coherence
microscopy system [41], and in spectral-domain optical coherence
tomography for high-speed complex conjugate resolved imaging [42].

The major interest of sinusoidally-modulated phase-shifting inter-
ferometry is the high operation speed that can be reached even with a
mechanically-generated modulation of the phase. This method requires
the synchronization of the phase modulation with the image acquisi-
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tion. In the original and conventional algorithm, the frequency of the
phase modulation is set to one quarter of the image acquisition
frequency, and sequences of four different interferometric images are
acquired continuously. Mathematical combinations of the four ac-
quired images yield images of the phase and the amplitude of the
interferometric signal. The calculations require sequences of four
images in a specific order. A challenging technical problem arises from
the calculations to be done during the continuous image acquisition. If
at least one image from the continuous image flow delivered by the
camera is missed, one has to wait for the next right sequence, i.e. the
sequence with images in the right order. That is what usually happens
due to calculation times, which leads to a reduction of the operation
speed compared to the maximal theoretical speed. Moreover, a method
has to be implemented for the identification of the right sequence of
images to be considered for the calculations.

In this paper, a compact and simple algorithm for both amplitude
and phase measurement of the interferometric signal delivered by a
two-wave interferometer using sinusoidal phase modulation is pre-
sented. Similarly to the conventional sinusoidal phase-shifting algo-
rithm, the algorithm proposed here is based on the combination of four
frames obtained by integration of the time-varying intensity in an
interference pattern during the four successive quarters of the modula-
tion period. However, unlike the conventional algorithm, any sequence
of four successive interferometric images can be considered for the
calculations, regardless of what is the first image of the sequence.
Analytical calculations and numerical simulations are carried out in
this paper to study the performance of the algorithm for digital fringe
envelope detection and phase map measurements. A comparison is
made with the conventional sinusoidal phase-shifting algorithm in
terms of performance.

2. Simplified algorithm

Assuming that monochromatic light is used, the optical intensity at
the output of a two-wave interferometer can be written as

I I Vcos ϕ= [1 + ( )], (1)

where I is the bias (mean) intensity, V the contrast (visibility) of the
interferometric signal ( V0 ≤ ≤ 1), and ϕ the optical phase. By
generating a sinusoidal phase modulation in the interferometer, of
amplitude ψ and period T π ω=2 / , the optical intensity at the output
varies with time as

I t I Vcos ϕ ψsin ωt θ( )= {1 + [ + ( + )]}, (2)

the parameter θ being determined by the time origin. A photodetector
integrates the time-varying signal I t( )over the four successive quarters
of the modulation period T. We consider an image sensor as a
photodetector, i.e. a two-dimensional detector array such as a CCD
or CMOS camera. The time-integration of I i j t( , , ) is performed in
parallel by all the pixels i j( , ) of the camera (frame-transfer and full-
frame camera). The charge storage period of the camera is set to be
one-quarter of the period T of the sinusoidal phase modulation. Four
frames of interferogram are thus recorded. The quantum efficiency of
the detector being η, at the considered wavelength λ, the four frames
are

∫E i j η I i j t dt p( , )= ( , , ) = 1, 2, 3, 4.p
p T

pT

( −1) /4

/4

(3)

The phase between the modulation and the periodic image acquisi-
tion is determined in this mathematical description by parameter θ .
The calculation of the integral in Eq. (3) can be carried out by writing a
Jacobi–Anger expansion of I t( ) using Bessel functions of the first kind:
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The expression of the four frames can then be written as

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑

∑

E ηI T VcosϕJ ψ ηI V T
π

cosϕ J ψ
k

kθ kθ kπ sinϕ

J ψ k θ k θ kπ

=
4

[1 + ( )]+

( ) 1
2

[−sin(2 )+sin(2 + )]+

( ) [−cos(2 +1) −sin((2 +1) + )] ,

k
k

k
k k

1 0

=1

∞

2

=0

∞

2 +1
1

2 +1
(5.a)

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑

∑

E ηI T VcosϕJ ψ ηI V T
π

cosϕ J ψ
k

kθ kθ kπ sinϕ

J ψ
k

k θ k θ kπ

=
4

[1 + ( )]+

( ) 1
2

[sin(2 )−sin(2 + )]+

( ) 1
2 +1

[−cos(2 +1) +sin((2 +1) + )] ,

k
k

k
k

2 0

=1

∞

2

=0

∞

2 +1
(5.b)

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑

∑

E ηI T VcosϕJ ψ ηI V T
π

cosϕ J ψ
k

kθ kθ kπ sinϕ

J ψ
k

k θ k θ kπ

=
4

[1 + ( )]+

( ) 1
2

[−sin(2 )+sin(2 + )]+

( ) 1
2 +1

[cos(2 +1) +sin((2 +1) + )] ,

k
k

k
k

3 0

=1

∞

2

=0

∞

2 +1
(5.c)

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∑

∑

E ηI T VcosϕJ ψ ηI V T
π

cosϕ J ψ
k

kθ kθ kπ sinϕ

J ψ
k

k θ k θ kπ

=
4

[1 + ( )]+

( ) 1
2

[sin(2 )−sin(2 + )]+

( ) 1
2 +1

[cos(2 +1) −sin((2 +1) + )] .

k
k

k
k

4 0

=1

∞

2

=0

∞

2 +1
(5.d)

One can write

E E
π

ηTI V Γ ϕ Γ ϕ− = 2 ( cos − sin ),a b1 2 (6.a)

and
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π
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Eqs. (6.a) and (6.b) can be rewritten as

E E
π

ηTI V Γ Γ cos ϕ π Γ Γ sin ϕ π− = 2 [( + ) ( + /4)+( − ) ( + /4)],a b a b1 2 (8.a)

E E
π

ηTI V Γ Γ cos ϕ π Γ Γ sin ϕ π− = 2 [( − ) ( + /4)+( + ) ( + /4)].a b a b3 4 (8.b)

If Γ Γ Γ= =a b , the two previous equations simplify. The visibilityV and
phase ϕ can then be calculated according to the two following frame
combinations:

E E E E Γ ηTI V[( − ) + ( − ) ] =(2 2 /π)( ) ,1 2
2

3 4
2 1/2 (9)
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