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a b s t r a c t

A new model for threshold voltage of double-gate Bilayer Graphene Field Effect Transistors (BLG-FETs) is
presented in this paper. The modeling starts with deriving surface potential and the threshold voltage
was modeled by calculating the minimum surface potential along the channel. The effect of quantum
capacitance was taken into account in the potential distribution model. For the purpose of verification,
FlexPDE 3D Poisson solver was employed. Comparison of theoretical and simulation results shows a good
agreement. Using the proposed model, the effect of several structural parameters i.e. oxide thickness,
quantum capacitance, drain voltage, channel length and doping concentration on the threshold voltage
and surface potential was comprehensively studied.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As predicted by Moore, the semiconductor industry has been
facing an exponential growth of the number of transistors per chip
during the last three decades. It is also predicted by ITRS (Interna-
tional Technology Roadmap for Semiconductors) that the gate
length would scale down to 4.5 nm by 2023 [1]. However, main-
taining this trend is a major challenge for both the industry and
scientific community due to arising short channel effects. As a re-
sult new device structures including FinFETs, nanowire FETs, and
recently carbon nanotube field-effect transistors (CNTFETs) and
graphene nanoribbon FETs have been proposed. Among them
graphene based devices (either single layer graphene or bilayer
graphene) have attracted the attention of scientific community
due to their fascinating electronic properties such as quantum hall
effect, high carrier mobility and their ability to be scaled down [2–
5].

On the other hand, the gapless nature of single layer graphene
which is considered as the main obstacle on its application in
graphene based electronics [6], causes the gate voltage to lose its
control on switching off the device [7]. To overcome this drawback,
bilayer graphene can be used where the band-gap is induced by
introducing a potential difference between two layers as a result
of an external perpendicular electric field [8,9]. Moreover, the po-
tential difference can be realized with an applied gate field which
means the band-gap can be controlled by gate bias [10]. Recently,
the feasibility of using bilayer graphene as channel material is ad-
dressed in some analytical device models [11–14].

The surface potential is a fundamental variable in the derivation
of various short channel effects. Thus, it is highly desirable for bi-
layer graphene to model the surface potential analytically with
the detailed device physics for developing the threshold voltage
model.

The paper is organized as follows. In Section 2 the potential dis-
tribution along the channel is modeled for the proposed structure,
the quantum capacitance is also modeled and subsequently in-
cluded in the potential model. In Section 3 the threshold voltage
is modeled based on the potential model. Section 4 deals with
the analysis of obtained results and illustrations. In Section 5 the
main conclusions are drawn.

2. Theoretical model for potential distribution

A schematic cross section of a double gate BLGFET with the def-
inition of the geometrical characteristics are shown in Fig. 1 where
tch, tg, tox are bilayer graphene, single layer graphene and oxide
thicknesses respectively and L is the channel length. The first and
second graphene layers are arranged in AB-stacking [15] as shown
in Fig. 2.

Using the common Poisson’s equation the potential distribu-
tion, U(x,y), for any point (x,y) of BLG channel is given by [16]:

@2Uðx; yÞ
@x2 þ @

2Uðx; yÞ
@y2 ¼ qðND þ niÞ

eg

0 6 x 6 tch;0 6 y 6 L
ð1Þ

where eg is the dielectric constant of graphene; q is the electron
charge; ND [in cm�3] is the doping concentration and ni = bn/tchc
[in cm�3] is the intrinsic carrier concentration where n is the two
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dimensional carrier concentration of bilayer graphene which is gi-
ven by [17]:

n ¼
Z 1

0
DOSðEÞ½f ðE� EFSÞ þ f ðE� EFDÞ�dE ð2Þ

where f ðE� EFiÞ ¼ 1=ð1þ eðE�EFiÞ=KBTÞ; EFsðEFdÞ is the Fermi energy of
source (drain) and DOS is the density of state

DOSðEÞ ¼ m�

2p�h2 1þ �hkg

2m�ðE� EcÞ½ �1=2

" #
ð3Þ

where Ec is the conduction band edge, m⁄ and E are effective mass
and energy of electron in BLG respectively, �h is the reduced Planck’s
constant, t\ = 0.35 eV is the interlayer hopping parameter and kg is
the wave vector in which the smallest gap is observed which is
given by [18]

kg ¼
V

2tF�h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 þ 2t2

?

V2 þ t2
?

s
ð4Þ

where V = V1 � V2 is interlayer potential, tF � 1 � 106 m s�1 is Fermi
Velocity [10].

In nanoscale devices where tox is small, quantum capacitance
which is connected in series with oxide capacitance, should be ta-
ken into account in overall gate capacitance [19]. To include the
effect of quantum capacitance into the potential distribution of
Eq. (1), the surface charge density is used

Q ¼
Z L

0

Z tch

0
qðND þ niÞdxdy ð5Þ

As a result, q(ND + ni) = Q/(L tch). In addition, the surface charge den-
sity using the Gauss theorem can be written as

Q ¼ tch CfgðUch;f þ Vfb � VfgÞ þ CbgðUch;b þ Vfb � VbgÞ
� �

ð6Þ

where Cfg(Cbg) is the front (back) gate oxide capacitance, Uch,f(Uch,b)
is the self consistent potential in the central region of the front
(back) channel and Vfb is the flat band voltage, the voltage at which
there is no band bending in the semiconductor, and is given by
[20,21]:

Vfb ¼ /m �
vg

q
þ Eg

2
þ KBT

q
ln

ND

ni

� �� �
ð7Þ

where /m is the metal work function, vg is the electron affinity, T is
the temperature and KB is the Boltzmann constant. For symmetric
structures it is assumed that Cg = Cfg = Cbg = eox/tox, Uch = Uch,f = Uch,b

where eox is the oxide dielectric. To gain a better insight in device
capacitances, the electrostatics of device is shown in Fig. 3

from which the differential capacitance seen by each gate is
given by

Cd;i ¼ Cg 1� @Uch;i

V ig

� �
ð8Þ

where (i = f,b) indicates front and back gates. According to Fig. 3 one
can rewrite Cd,i as

Cd;i ¼
CgðCg þ CqÞ

2Cg þ Cq
ð9Þ

from Eqs. (8) and (9) we have

Uch;i ¼
CgVig

2Cg þ Cq
ð10Þ

consequently Eq. (6) can be obtained as

Q ¼ tchCg
Cg

2Cg þ Cq
� 1

� �
ðVfg þ VbgÞ þ 2Vfb

� �
ð11Þ

In addition, the quantum capacitance is given by

Cq ¼ q2 @ni

@E
ð12Þ

where E is energy. Substituting ni in Eq. (12), the quantum capaci-
tance is written as

Cq ¼
m�

2p�h2tch

DðEÞ
X
i¼S;D

f ðE� EFiÞ ð13Þ

where DðEÞ ¼ 1þ �hkg

2m�ðE�EcÞ½ �1=2

h i
. The Mexican-hat structure of the

band in BLG provides a large DOS and makes quantum capacitance
comparable to Cg. Now the effect of quantum capacitance can be in-
cluded into the potential distribution of Eq. (1)

@2Uðx; yÞ
@x2 þ @

2Uðx; yÞ
@y2 ¼ 1

eg

Q
Ltg

� �
ð14Þ

Inasmuch as in the strong inversion region the charge controls the
channel potential along the y-direction [23,22], Eq. (1) is valid for
weak inversion region where the potential can be approximated
by a simple parabolic function along the (x) [24,25]:

Uðx; yÞ ¼ P0ðyÞ þ P1ðyÞxþ P2ðyÞx2 ð15Þ

where coefficients P0, P1 and P2 are functions of y only and are
solved with the boundary conditions of:
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Fig. 1. Cross view of bilayer graphene double gate transistor.

Fig. 2. A typical AB-stacked bilayer graphene [4].

Fig. 3. Equivalent circuit of device electrostatics.
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