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A B S T R A C T

We demonstrate a depth and reflectivity imaging system at low light level based on sparsity regularization
method. Depth and reflectivity imaging from the time-correlated single photon counting (TCSPC) measurement
in limit of few photon counts are reconstructed through exploiting transform-domain sparsity. Two different
sparsity-based penalty function: total variation (TV) penalty and l1 norm penalty measuring sparsity in the
discrete cosine transform(DCT) basis, are applied to the experimental data. The results show that compared
with traditional image denoising method, sparsity regularization approach achieves better accuracy with fewer
photon measurements. Further more, the performance of TV regularization is proved better than l1-DCT
regularization method for photon-limited imaging at first time, especially in the case of depth imaging. Our
system is a photon-limited imaging device for a variety of applications, such as target detection, space
surveillance, and distance measurement.

1. Introduction

Photon-limited imaging has attracted huge attention for a range of
applications (e.g., target detection, space surveillance, and distance
measurement) due to its unique ultralow-light working mode [1–5].
There are two key components in this imaging system. One is the
detector with single photon sensitivity. While the Geiger-mode single
photon detector (GmAPD) is already well developed and commercially
available [6–9]. Another one is time-correlated single photon counting
(TCSPC) module. TCSPC is a statistical sampling technique with
picoseconds timing resolution based on the repetitive, precisely timed
registration of single photons [10–14]. Previous research about the
depth and reflectivity imaging based on GmAPD introduced many
different methods to improve the efficiency of the imaging system at
low light level. MIT Lincoln Laboratory used a GaSb-based material
system 32×32 GmAPD array to extend to 2 µm wavelength operation,
achieving 30 cm depth resolution at a distance of 20 m [15]. McCarthy
et al. [16] used a low noise superconducting nanowire single-photon
detector in their 1560 nm wavelength laser ranging system which
obtained centimeter resolution depth images in daylight at stand-off
distances of the order of one kilometer. A composite modulation
method was used based on GmAPD in Ref. [17] to achieve the range-
intensity image of a target in low-light level environments. The above

and some other traditional imaging lidar systems which use single
photon detector and TCSPC technique usually needs to detect hun-
dreds of photons per pixel and even more data needs to be collected in
the presence of background noise [18]. The resulting long dwell times
limit the real-time performance of imaging lidar systems and lower the
achievable imaging quality by fast raster scanning. Meanwhile, it is
typical to first obtain a noisy pixelwise maximum likelihood (ML)
estimate of scene reflectivity and depth using photon arrival data then
applying image denoising methods. However, under low light level
conditions the sample data is limit and signal-to-noise ratio (SNR) is
low, ML solutions get inaccurate estimates. In addition, the traditional
denoising methods usually assume a Gaussian noise model [19], which
is appropriate for high-flux situations but not for low light levels.
Therefore, it is necessary to develop a novel imaging system under the
condition of low light level and low SNR.

When the number of the photons is small, the measurement process
is best modeled with a Poisson distribution [19,20]. Thus, accurate
reconstruction of a spatial or temporal image from Poisson data can be
accomplished by minimizing a negative Poisson log-likelihood objec-
tive function with non-negativity constraints [19]. Actually, natural
scenes possess a typical scene structure–in depth as well as in
reflectance–which is often described using sparsity in appropriate
transform domains, such as discrete wavelet transform (DWT) or
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discrete cosine transform (DCT). Therefore, a regularization term is
always added to constrain the sparsity of the underlying image over the
transform domain. In Ref. [4,21], the l1 norm based on DWT is applied
to constrain the sparsity of image. In Ref. [22,23], total variation (TV)
seminorm is selected as the regularization term. TV seminorm is
essentially l1 norm of derivative [24]. Instead of assuming the signal
is sparse, the premise of TV regularization is that the gradient of the
underlying signal or image is sparse. In general, this seminorm
measures how much an image varies across pixels [25], which is often
a useful alternative to DWT or DCT based regularizer. Although TV
regularization can be regarded as a generalized l1 regularization, for
comparative purpose we distinguish it from l1 regularization here.

In this paper, we demonstrate a photon-limited depth and reflec-
tivity imaging system by using sparsity regularization from a small
number of photon measurements at each pixel, even the mean count of
the flux reaching the detector approaches 1.8 photons per pixel. When
the scanning single photon detector is replaced with a single photon
detector array with time-correlated or time-resolved function [26], this
scanning imaging setting will form a genuine photonic camera, which
can reconstruct 3D images of scenes only with a few photons per pixel.
Compared with the conventional two-step procedure of pointwise ML
estimation followed by traditional denoising method, the sparsity
regularization methods achieve better image quality with fewer photon
measurements. The experimental results show that performance of TV
regularization is proved better than l1-norm regularization for photon-
limited imaging at first time, especially in the case of depth imaging.

2. Experiments

The imaging system schematically illustrated in Fig. 1 is used to
collect the photon arrival data. The illumination source is a super-
continuum laser (SuperK EXTREME EXW-12, NKT Photonics,
Denmark) with tunable wavelength and tunable repetition rate. In this
experiment, the wavelength was selected as 532 nm by an acousto-
optic tunable filter and the repetition rate was set at 3.89 MHz. The
average power was set at 10 μW. The laser beam was collimated by
lenses L1 and L2. A half-wave plate (HWP) was located before the
polarization beam splitter (PBS) to control the transmission of the laser
pulse at PBS. The laser output was reflected off a Thorlabs GVS012
two-axis galvo scanning system that raster scanned the beam over the
target. The maximum mechanical scan angle was ± 20°, which limits
the field of view (FOV) of imaging system. The galvo system took two
analog voltage inputs (one for each axis, 0.5 V/degree) supplied by a
Tektronix AFG 3252 function generator that was programmed by
LabVIEW. The target was placed at distance of 1.5 m apart from the
experimental set up. The diameter of the spot size at 1.5 m distance
was measured to be 2 mm. The scattered light in the FOV of the system
returned to the GmAPD through PBS reflection. Before detection, the
light was filtered using an optical band pass filter (BPF) with 1 nm
bandwidth centered at 532 nm whose peak transmission was 20%. The
GmAPD was a Perkin Elmer series detector (SPCM-AQRH-16) with
180 µm active area, 55% quantum efficiency at 532 nm, less than
100 ps time jitter, and less than 25 dark counts per second. The photon
detection events were time stamped relative to the laser pulse with 8 ps

resolution using HydraHarp400 TCSPC module (PicoQuant). The
characteristic of the complete TCSPC system that summarizes its
overall timing precision is its Instrument Response Function (IRF)
[14]. The IRF was obtained by directly scattering the detector with
highly attenuated laser and binning the photon arrival times to
genereate a histogram of photon counts. The IRF width of our imaging
system was measured as 448 ps.

We had tried two different transmit-receive modes, bistatic and
monostatic, during the experiments. These two modes have their own
advantages and disadvantages. The advantages of the bistatic include
simple optical setup and no internal reflection interference. However,
because of the fixed receiver optical system and the larger FOV for
receiving, more background light comes to the receiving system. As to
the monostatic system, the influence of back light is much less than
that of bistatic, because only the back light from the illuminated area
on the target can project into the detector. However, its disadvantages
include more difficult adjustment of the optical path and effective
isolation between the transmitting and receiving beams (e.g., internal
reflection). Finally, the monostatic system is adopt as Fig. 1 showing
and the internal reflection was removed during data processing. For the
data acquisition part, a HydraHarp400 time-tagged time resolved (T3)
measurement mode was adapted. The resulting HT3 files are read
using a mixed programming of MATLAB and Perl. This program
discarded the useless information such as parameter setting log and
overflow marker except for the photon detection events.

To generate one complete data set, we raster scanned over
200×200 pixels with two-axis galvo system. Each pixel was illuminated
with a total of N light pulses. The pixel-wise data acquisition time is
then T T N= ×a r seconds. Here Tr is determined by the repetition rate.
We record the total number of observed photon detections ki j, along

with their set of photon arrival times T t t t= { , ,…, }i j i j i j i j
k

, ,
(1)

,
(2)

,
( )i j, at each

pixel. If k = 0i j, , then T = ∅i j, . The measurement uncertainty in the
photon arrival time results from background light intensity b and dark
counts d. Before collecting the data, we measured the dark counts of
the system as ∼20 counts/s when turning off all light in the lab. The
sum value of the background light and dark counts is measured as
∼382 counts/s when turning on one lab lamp. The laser power was
adjusted so that each photon detection had about 50% probability of
originating from background light, i.e, the SNR is equal to 1. Namely,
SNR is defined as the mean detections due to backreflected light
divided by the mean detections due to background light and dark
counts.

3. Data processing procedure

In this section, we demonstrate the 3-step computational recon-
struction procedure using to recover high quality scene reflectivity and
depth imaging from few photon arrival data. This framework was first
developed in [4], and modified in [23,27], which proceeds in three
steps. To our knowledge, the penalty term is also important in the
framework, which can affect the results of reconstruction. Therefore,
we used and compared two different penalty functions: total variation
penalty and l1 norm penalty, the detail information is described later in
this section and Section 4.

Illuminating a scene pixel (i,j) with intensity-modulated light pulse
s(t) results in backreflected light signal r t x s t z c b( ) = ( − 2 / ) +i j i j i j, , , ,
where x denotes target reflectivity, z denotes the distance to target
patch and c denotes the speed of light. The indices i xp= 1,…, and
j yp= 1,…, represent the horizontal and vertical pixel coordinates,
respectively. The quantum nature of light is correctly accounted for
taking the counting process at the GmAPD output to be an inhomo-
geneous Poission process with rate funtion:
λ t ηr t d ηx s t z c ηb d( ) = ( ) + = ( − 2 / ) + ( + )i j i j i j i j, , , , , where η denotes the
detection efficiency. For notational convenience, the mean signal S and

background count B per period are defined as ∫S s t dt= ( )
T

0
r

and

Fig. 1. Schematic of imaging system which comprises a supercontinuum laser source, a
GmAPD detector, a TCSPC module and a custom transceiver. Optical components
include: collimation lenses (L1, L2); half wave plate (HWP); polarizing beam splitter
(PBS); scanning galvo mirrors; optic bandpass filter (BPF); fiber coupling receiver (FCR).
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