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A B S T R A C T

All-fiber polarization transformer (AFPT) is a length of variably spun birefringence fiber which can transform
the state of polarization as a wave plate. A set of complete analytic solutions for the coupled-mode equation of
AFPT with a specific function of spun rate is deduced by a modified method through deliberate matrix
transformation. And the analytical expressions of the transmitting eigen-modes from the zero spun-rate end to
the maximum spun-rate end are derived. Moreover, when the linear polarized light is input as single eigen-
mode, the ellipticity of quasi-circular polarization light at the output end is calculated as function of the fiber
structure parameters. The equivalent retardation of AFPT is evaluated and the critical constraints between the
fiber length and the maximum spun rate are illustrated according to practical requirements.

1. Introduction

In optical fiber sensors, lasers and amplifiers, the state of polariza-
tion (SOP) of the light propagating along the fiber needs to be
manipulated for optimal operation [1–3]. The transformation of SOP
is usually controlled with bulk-optic wave plates which are bulky,
narrowband, and often require careful manual adjustments. It has been
demonstrated that a length of variably-spun birefringence fiber can
function as a quarter-wave plate with wide band, if the spun rate
increases slowly and the maximum rate is large enough [4–9]. When
the linear polarization light is launched into the unspun-rate end as
single eigen-mode, the quasi-circular polarization light can be obtained
at the fast spun-rate end. This fiber element is usually called all-fiber
polarization transformer (AFPT). AFPT can be not only made by the
existing fabrication technique in a drawing tower with variably rotating
preform [5], but also fabricated by post-draw twisting at the softening
temperature of the fiber with shorter length [7].

The variably coupled-mode equation of AFPT has been discussed by
Huang, who has given a set of approximate solutions by an iterative
approach to predict its polarization transforming behavior [4]. Because
the coupling coefficients are function of the spun-rate which varies
along the whole fiber length, it is difficult to find analytical solutions for
the coupled-mode equation. In conference of SPIE [10,11], we once
reported our preliminary method by simple transformation matrix to
find the analytic solutions based on assumption of constant and slowly
variation factor. In this paper, through a set of more general transfor-
mation matrix which can directly diagonalize the coupled-mode

equation, we give a modified method to find the specific function of
spun rate which can make the equation possess analytical solutions.
Then, in line with the analytical solutions corresponding to the specific
spun-rate, the concise characteristics of AFPT are strictly predicted
according to the fiber structure parameters. Meanwhile, the critical
constraints between the fiber length and maximum spun-rate accord-
ing to practical requirements are discussed in detail.

2. Transformation of coupled-mode equation in AFPT

The schematic diagram of AFPT is shown in Fig. 1. The spinning
takes place gradually from the point of z=0. The rotation angle of local
coordinates fixed with the linear birefringence axes at point z in fiber is
φ z( ) and the profile of spinning rate is τ z dφ dz( ) = / .

In fabrication arts, the spun-rate profile is often taken as linear
function τ z τ z L( ) = ⋅( / )L or raised cosine function τ z τ( ) = 0.5 L

z L π[1 − cos(( / )⋅ )] , where L is the total length of the spun fiber and
τL is the maximum spun rate at z=L.

In the local coordinates system, the electrical field components of
light wave observe the polarization mode-coupled equation:

dA z dz K z A z( )/ = ( ) ( ) (1)

where A(z) is a Jones matrix whose elements are Ax(z) and Ay(z)
indicating respectively the electric field components along with the
polarization principal axes of the birefringence fiber. Because the
elastic-optical effect is encountered only for physical twist but not in
the spun fiber which is drawn through melted state, the operator matrix
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K(z) of AFPT can be represented as [4].

K z
jΔβ τ z

τ z jΔβ
( ) =

/2 ( )
− ( ) − /2

⎛
⎝⎜

⎞
⎠⎟ (2)

where Δβ= βx - βy =2π/LB is the difference between the propagation
constants βx and βy respectively for the orthogonal polarized local
modes in the birefringence fiber. LB is the beat length of the
prototypical birefringence fiber. For convenience, all the values con-
cerned with length are normalized by the beat length LB in the
following. By the matrix transformation A(z)=O(z)W(z), Eq. (1) can
be changed as follows

dW z dz N z W z( )/ = ( ) ( ) (3)

N z O z z O z O z dO z dzK( ) = ( ) ( ) ( ) − ( )[ ( )/ ]−1 −1 (4)

W(z) is also a column matrix, Wx(z) and Wy(z) are orthogonal
components of the mode in normal coordinates. In order to diagonalize
K(z), we choose the transformation matrix O(z) as follows

z
ϕ z θ j ϕ z θ ϕ z θ j ϕ z θ
ϕ z θ j ϕ z θ ϕ z θ j ϕ z θ

O( )

=
cos ( )cos − sin ( )sin cos ( )sin + sin ( )cos

− cos ( )sin + sin ( )cos cos ( )cos + sin ( )sin
⎡
⎣⎢

⎤
⎦⎥
(5)

where ϕ z Q z( ) = 0.5 arctan[2 ( )], Q z τ z Δβ L τ z π( ) = ( )/ = ( )/2B is the nor-
malized spun-rate, θ is an undetermined constant independent of z.
Substituting O(z), K(z) into Eq. (4), the operator matrix N(z) in normal
coordinates can be derived as

N z j dϕ z
dz

θ θ θ θ

θ θ θ θ

( ) = ( ) ×

cos(2 ) + sin(2 ) − cos(2 ) + sin(2 )

− cos(2 ) + sin(2 ) − cos(2 ) − sin(2 )

g z
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g z
dϕ dz

g z
dϕ dz

g z
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/
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/
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⎢⎢⎢
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⎦
⎥⎥⎥ (6)

where

g z π Q z( ) = 1 + 4[ ( )]2 (7)

and

dϕ z
dz Q z

dQ z
dz

( ) = 1
1 + 4[ ( )]

( )
2 (8)

If θ = 0, from Eqs. (5) and (6), O(z) and N(z) are respectively equal
to those in our previous conference reports [10,11]. So O(z) and N(z) in
this paper are just the modified transformation matrix and general
operator matrix. In general case for θ ≠ 0, the matrix N(z) can be
directly diagonalized by choosing proper θ. Then we can determine the
specific spun-rate profile according to θ and obtain the analytic
solutions from matrix N(z).

3. Analytic solution for AFPT with specific spun-rate profile

If the sub diagonal elements of matrix N(z) are equal to zero, Eq. (3)
may have analytical solutions. In order to diagonalize N(z) in Eq. (6), θ
should satisfy

θ θ g z
dϕ dz

− cos(2 ) + sin(2 ) ( )
/

= 0
(9)

Substituting Eqs. (7) and (8) into Eq. (9), we obtain

π θ
Q z

dQ z
dz

tan(2 ) = 1
{1 + 4[ ( )] }

( )
2 3/2 (10)

Suppose QL is the maximum normalized spun rate at the final end,
that is when z=L, Q z Q L Q L τ π( ) = ( ) = = /2L B L . For a determined QL
and L, by definite integration with Q(0)=0 and Q(L)=QL, the proper θ
and the corresponding specific function of normalized-spun-rate can be
derived as

θ Q

πL Q
= 1

2
arctan

1 + 4
L

L
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The corresponding spun rate profile is

τ z τ( ) =

+ 4( ) − 1
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Eq. (6) can be simplified by Eq. (9) as follows

N z j dϕ z
dz

θ
θ

( ) = ( ) csc(2 ) 0
0 − csc(2 )

⎛
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⎞
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⎡
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⎤
⎦⎥ (14)

By the integration of Eqs. (3) and (14) respectively, we obtain

∫W z N t dt W( ) = exp[ ( ) ] (0)
z

0 (15)

∫ ∫N z dt j
θ

θ
dϕ t

dt
dt

jϕ z
θ

θ

( ) = csc(2 ) 0
0 − csc(2 )

( )

= [ ( )] csc(2 ) 0
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z z

0 0

⎡
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⎡
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Substituting Eq. (16) into Eq. (15) yields

W z
jϕ z θ

jϕ z θ
W( ) =

exp[ ( )csc(2 )] 0
0 exp[− ( )csc(2 )]

(0)
⎡
⎣⎢

⎤
⎦⎥ (17)

This is the analytic solutions of the coupled-mode Eq. (3) in normal
coordinates. The eigen-modes at z=0 are W (0) = [1, 0]T1 or
W (0) = [0, 1]T2 , and the transmitting eigen-modes along fiber can be
written respectively as W z jϕ z θ( ) = [1, 0] exp[ ( )csc(2 )]T

1 or
W z jϕ z θ( ) = [0, 1] exp[− ( )csc(2 )]T

2 .
Considering the modified transformation A(z)=O(z)W(z), the ana-

lytic solutions of the coupled-mode Eq. (1) can be deduced from Eq.
(17) as follows

Fig. 1. The end view of a section of variably spun Panda birefringence fiber along the length.
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