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A B S T R A C T

With the research focus of subaperture stitching interferometry shifting from flat wavefronts to aspheric ones, a
variety of algorithms for stitching optimization have been proposed. We try to category and compare the
algorithms in this paper by their modeling of misalignment-induced subaperture aberrations which are of low
orders. A simple way is to relate the aberrations to misalignment by linear approximation with small angle
assumption. But it can not exactly model the induced aberrations of aspheres. In general, the induced
aberrations can be fitted to free polynomials and then removed from subaperture measurements. However, it is
at the risk of mixing up the surface error and the induced aberrations. The misalignment actually introduces
different terms of aberrations with certain proportions. The interrelation is then determined through analytical
modeling or ray tracing. The analytical model-based algorithm and the ray tracing-based algorithm both are
tedious, aperture shape-related and surface type-specific. While the configuration space-based algorithm we
proposed numerically calculates the surface height change under rigid body transformation, it is generally
applicable to various surface types and different aperture shapes. Simulations and experiments are presented to
compare the stitching results when different algorithms are applied to null cylindrical subapertures measured
with a computer generated hologram. The configuration space-based algorithm shows superior flexibility and
accuracy.

1. Introduction

Subaperture stitching interferometry enables test of large optics
beyond the aperture and dynamic range of a standard interferometer
because only a small subaperture of the optics is tested in a single
measurement. Mechanical movement is required to align different
subapertures to the test beam, which inevitably introduces misalign-
ment and consequently results in change of optical path difference
(OPD). It contributes to the subaperture wavefront aberrations and
couples with the surface error. Stitching algorithms are then critical to
bring all subaperture measurements together with misalignment-
induced aberrations removed.

The change of single-pass OPD in the case of misalignment
corresponds to the change of measured surface height in normal with
respect to the reference surface. It can be divided into two components.
The first one denoted by Δφn is related to the nominal surface height
change. It exists even if the test surface is ideal without any figure error.
For example, a tilting plane changes its height coordinates related to
the tilting angle. Hence in the simplest way, the change of OPD on the
pixel (u,v) is linearly related to piston, tip and tilt as below:

Δϕ a bu cv= + + ,n (1)

where a, b, and c are the coefficients of piston, tip and tilt. It works well
for flat surfaces which are insensitive to lateral shift. Such a linear
relationship is the result of first-order approximation of rigid body
transformation under the small angle assumption, i.e., the tilting angle
α is so small that sinα can be approximated by α and cosα by 1,
respectively. However, Eq. (1) does not describe how the OPD changes
with the change of lateral coordinates, e.g., in the case of lateral shift.

The second component of OPD change is related to the surface
error itself, denoted by Δφe. It deals with the lateral coordinate change
under misalignment such as lateral shift and clocking (rotation around
Z axis). For the ideal surface without figure error, this component is
nominally zero. The OPD change can be linearly related to the slope of
surface height [1,2]:
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where p and t are the coefficients of lateral shift, θ is the clocking angle,
and the partial derivatives are slopes in u and v directions, respectively.
When testing aspheres with auxiliary null optics, Eq. (2) does not
describe how the OPD changes with the change of null test condition.
For an instance, the nominal asphere under test gives zero OPD in a
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null test because the aspheric test wavefront modulated by the null
optics exactly matches the measured surface. While the surface is
misaligned, the test surface deviates from null test condition and
significant aberrations such as coma and astigmatism arise in the
measured wavefront. It can not be predicted by this slope-based model
because the slope used here is not the slope of the aspheric surface sag
in the Cartesian frame. It is the rate of variation of normal surface
height with nominal surface sag subtracted.

A combination of Eqs. (1) and (2) seems a complete description of
the OPD change induced by misalignments:
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where d is the coefficient of power (focus) and this term is included for
testing spheres or aspheres. The OPD change is then optimally
removed from the subaperture measurement based on the least-
squares (LS) principle by minimizing the overlap mismatch as below:
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The left superscript “ik” indicates the overlap between subapertures
i and k and ikNo is the number of overlapping point pairs.

However, neither Eq. (1) nor Eq. (2) describes how aberrations are
induced by misalignment of aspheric subapertures. When testing an
asphere, optical metrologists are familiar with various aberrations
induced by different misalignments. For an instance, tilt of an off-axis
aspheric subaperture usually introduces astigmatism and coma to the
wavefront aberration. It is not modeled in Eq. (3). With the research
focus of subaperture stitching interferometry shifting from flat wave-
fronts to aspheric ones, a variety of algorithms for stitching optimiza-
tion have been proposed [3–13]. The major difference lies in modeling
of misalignment-induced subaperture aberrations. That is also the
kernel of stitching optimization for aspheric subapertures. The algo-
rithms are categorized into five groups in this paper. Comparative
analysis is given and followed by simulation and experimental demon-
stration.

2. Comparative analysis of subaperture stitching algorithms

2.1. Slope-based algorithm

Although there are a variety of subaperture stitching algorithms,
they primarily boil down to solving the LS problem to minimize the
overlap mismatch. Nevertheless, different way of modeling the mis-
alignment-induced subaperture aberrations makes the algorithms
different. The slope-based algorithm uses Eq. (3) to model the
misalignment-induced aberrations. As mentioned above, it deals
efficiently with lateral coordinate change which is related to the OPD
change by the slope. It is advantageous when testing surface with
significant middle to high-frequency error since the slope is quite big
and OPD change is sensitive to the lateral coordinates change. A good
example is stitching or registration of the continuous phase plates
featured with vertical fluctuation of small amplitude and high fre-
quency [14]. Pixel-scale lateral shift results in remarkable wavefront
error and simple correction of piston, tip-tilt is insufficient.

The major disadvantage of the slope-based algorithm is its ineffi-
ciency of correcting the misalignment-induced aberrations for as-
pheres. Aberrations induced by misaligned aspheres are not only tip-
tilt and power, but also more complex compound of secondary, tertiary
and even higher orders.

2.2. Free polynomials correction

It is straightforward to describe the induced aberrations in poly-
nomials and then best recognize the polynomial coefficients by mini-

mizing the overlap mismatch. Generally Zernike polynomials are
adopted which are orthogonal over a circular pupil and the low order
terms are physically related to the Seidel aberrations such as the coma
and astigmatism [15,16]. In such a way, the OPD change Δφ includes
the induced aberrations which are mostly coma and astigmatism:
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where c0~c7 are coefficients of piston, tip, tilt, power, astigmatism and
coma, respectively. It can be considered as the augmented version of
Eq. (1). And even more terms of Zernike polynomials can be included
such as trefoil and high order coma and astigmatism. However, there
are only six degrees of freedom for a rigid body motion, which means
no more than six independent terms are allowed in the OPD change
equation except the first three terms. As a result, if we include higher
orders such as the trefoil, secondary coma and secondary astigmatism,
their coefficients should not be independent. Otherwise it is at the risk
of mixing up the surface error and the induced aberrations.

The misalignment actually introduces different terms of aberrations
with certain proportions. The proportion of higher orders increases
with both the numerical aperture (NA) of the test beam and the amount
of higher order surface sag, which will be shown in the following
subsections. Therefore it is possible to mistake the surface error for the
induced aberrations if free polynomials are used. The interrelation
between polynomial terms must be modeled exactly to describe the
misalignment-induced aberrations.

Fig. 1. Misaligned surface with six degrees of freedom.

Fig. 2. Configuration space-based coordinate mapping.
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