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A B S T R A C T

We study the optical Anderson localization associated with the properties of three-dimensional (3D) disordered
percolation system, where the percolating clusters are filled by active media composed by light noncoherent
emitters. In such a non-uniformly spatial structure the radiating and scattering of field occur by incoherent way.
We numerically study 3D field structures where the wave localization takes place and propose the criterion of
field localization based on conception of a mean photon free path in such system. The analysis of a mean free
path and the Inverse participation ratio (IPR) shows that the localization arises closely to the threshold of 3D
percolation phase transition.

1. Introduction

Disordered photonic materials can diffuse and localize light through
random multiple scattering, offering opportunities to study mesoscopic
phenomena, control light–matter interactions, and provide new stra-
tegies for photonic applications [1]. Wave transport in disordered
systems is a fast developed topic, one of that is the optical wave in
random dielectrics [2]. In disordered optical materials, the multiple
scattering of light and the interferences between propagating waves
lead to the formation of electromagnetic modes with varying spatial
extent, depending on scattering strength, structural correlations, and
dimensionality [3] of the system [4,5]. This combination leads to a
series of interesting physical effects and also creates large potential for
new disorder-based optical applications [6].

It is well-known that at the optical Anderson localization (OAL) the
counter-propagating waves form closed loops; interference along these
loops lead to randomly shaped standing-wave patterns confining the
light [6,7]. In one and two dimensions, the chance of coming back to
the same region a necessary requirement to form a loop is much higher
than in three dimensions. For this reason, observing OAL in three
dimensions is extremely difficult for light waves [6]. Three-dimensional
disordered structures have been studied recently for investigation of
complex optical phenomena, including light localization [6–11], and
random lasing [12–14]. In most lasing random materials, the intensity
is spread throughout the sample and, in general, there are several
lasing modes. In certain cases interference of different modes can lead
to light localization [15,16].

The study for Anderson transition in 3-D optical systems still has
not been conclusive despite considerable efforts. The localization

transition may be difficult to reach for the light waves due to various
effects in dense disordered media required to achieve strong scattering
[see e.g. [17] and references therein]. The experimental observation of
OAL [18] just below the Anderson transition in an open 3D disordered
medium shows strong fluctuations of the wave function that leads to
nontrivial length-scale dependence of the intensity distribution (multi-
fractality). Such behavior can be specified by varying the system size
and quantified deeper by using the generalized inverse participation
ratios (IPR).

Various schemes can be proposed to study OAL, e.g. the use a
coherently prepared three-level atomic medium provides a disordered
scheme for realizing the Anderson localization (see [19] and references
therein).

Other perspective 3D disordered systems where the optical trans-
port was studied belong to percolating crystals. In such materials the
optical transparency assisted by disordered porous clusters was
observed [20]. Also it was studied some interesting properties of
optical nanoemitters incorporated into 3D spanning cluster [21]. In
supercritical state, the field intensity is large enough to produce a
dynamic high-density coherent field. For material with small losses the
long-term coherence arises in the area close to the percolation thresh-
old. It is found also the random lasing assisted by nanoemitters
incorporated into such a disordered structure [22]. In this system the
spanning cluster produces a global percolation that results in qualita-
tively modification of its spatial properties. One can argues that already
in a vicinity of the percolating phase transition the fractal dimension of
such system D ≃ 2.54H considerably differs from the dimension of the
embedded space D=3 (multifractality). One of important question is
whether the optical Anderson localization [23] can still be archived for
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a non-integer dimension case with a fractal (Hausdorff) dimension of
D < 3H , where the strong randomness for properties of the system is
expected.

In this paper we study the optical localization associated with the
structure of three-dimensional (3D) disordered percolation system,
where the percolating clusters are filled by active media composed by
light noncoherent emitters. In such a non-uniformly spatial structure
the radiating and scattering of field occur by incoherent way. We have
studied the range of parameters where the wave localization can take
place. The Fermat principle and Monte Carlo approach are applied to
characterize the optimal optical path and interconnection between the
radiating emitters. This allows to consider the average free path of light
as a mean that in a simplest case is a ratio of the length of path to
number of emitters. This leads to formulating of condition when the
localization can occur (similarly to Ioffe-Regel criterion) for a percolat-
ing model. Our 3D simulations allow calculating of such free path to
study the situation where such condition can be satisfied. FDTD
numerical simulations have shown that in such a system the localized
optical modes arise closely to the percolation threshold. We also
studied the properties of associated field inverse participating ratio
(IPR) and found that mean free path, IPR and the percolation order
parameter show well-pronounced critical behavior near the percolating
threshold. Considered in this paper random percolating system is
specially challenging due to its spatial inhomogeneity and also multi-
fractality in 3D.

The paper is organized as follows. In Section 2 we formulate the
main equations. In Section 3 we present the numerical results on the
field distribution generated by the emitters in percolating medium.
Section 4 contains the approach and formulation the conditions of
optical localization in percolating system. In Section 5 we study the
properties of the inverse participation ratio (IPR) for percolating
systems, and the last sections contain the discussion and conclusions.

2. Basic equations

We study the integral emission of electromagnetic energy from a
cubical sample x y z l( , , ) ∈ [0, ]0 . The output flux of energy can be
written as

∮I dS I I IK n= ( · ) = + + ,
S

x y z (1)

where K is the Pointing vector, n is the normal unit vector to the
surface S of cube, and Ix y z, , indicate the fluxes from two faces of the cube
perpendicular to a particular direction. To find the emission from the
system we solve numerically the equation that couples the polarization
density P, the electric field E, and occupations of the levels of emitters.
In the case of uncoupled emitters this equation is [24]
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−1, where T2 is the mean time between dephasing

events, τ21 is the decay time from the second atomic level to the first
one, and ωa is the frequency of radiation. The electric and magnetic
fields, E and H, and the current tj P= ∂ /∂ are found from the Maxwell
equations, together with the equations for the densities N tr( , )i of
atoms residing in i − th level. In the case of four level laser
i = 0, 1, 2, 3 these rate equations read (see [25] and references therein)
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An external source excites emitters from the ground level (i=0) to third
level at a certain rate Ar, which is proportional to the pumping
intensity in experiments. After a short lifetime τ32, the emitters transfer

nonradiatively to the second level. The second level and the first level
are the upper and the lower lasing levels, respectively. Emitters can
decay from the upper to the lower level by both spontaneous and
stimulated emission, and ωj E( · )/ a is the stimulated radiation rate.
Finally, emitters can decay nonradiatively from the first level back to
the ground level. The lifetimes and energies of upper and lower lasing
levels are τ21, E2 and τ10, E1, respectively. The individual frequency of
radiation of each emitter is then ω E E= ( − )/a 2 1 .

Below we consider the situation when incipient percolating cluster
is completely filled with light sources. Such cluster (simple cubic
lattice) is shown in Fig. 1, where all internal uncoupled clusters have
been omitted. We indicate that the percolation cluster in Fig. 1 has a
typical dendrite shape that, however, depends on the actual random
sampling. Re-running simulation with another random seed value will
lead to percolation cluster with somewhat different geometry, which
will also have similar sponge structure. The cluster is grown in the x-
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Fig. 1. Typical spatial structure of the incipient percolating cluster near the percolation
threshold at p=0.32 in the cube l l l× ×0 0 0, where l m= 100 −4 . The cluster is shown for

50 × 50 × 50 numerical grid. Only clusters coupled to the spanning cluster are shown,
while all the internal clusters unconnected to the entry side are not displayed. In this
configuration considerable quantity of the emitters are incorporated closely to the entry
side (indicated by incoming arrow) of the crystal. The solid line connects the nodes
jointed with the use of the variational Fermat's principle. See details in Section 4.
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Fig. 2. The typical field distribution (in central intersection) Ex in the percolating

system with p=0.316 nearly pc for cub with L=100. In this case the number of emitters N
is about 105. Small color squares display the radiated field in position of emitters inside
the cluster. However the spot around x y= 20, = 40 exhibits the amplitude of localized

mode beyond the cluster. Other modes are generated too, but with lesser amplitudes.
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