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A B S T R A C T

A rigorous, simple and efficient approach is derived in this paper for multipole expansion of a circularly
symmetric Bessel beam. Different from the existing rigorous methods which are based on the plane wave
spectrum of a Bessel beam, a straight-forward integral procedure is presented in a traditional way to obtain the
analytical expressions of the expansion coefficients, also called beam shape coefficients (BSCs). The convergence
and correctness of the BSCs are verified numerically in detail for both on-axis and off-axis cases. The results in
this paper are useful in various analytical scattering theories, such as the generalized Lorenz-Mie theory and the
Null-field method, when a Bessel beam is considered.

1. Introduction

Analyses of interactions between shaped beams and small particles
became more and more important in recent years due to their essential
roles in optical characterization, optical trapping and manipulation,
remote sensing and others [1,2]. Concerning shaped beams, there has
been an increasing interest in Bessel beams [3,4], which is mainly due
to its special properties, including propagation invariance, self-recon-
struction, and the transfer of orbital angular momentum as well as spin
angular momentum to matter. Prospective applications of Bessel
beams can be found in wide range of fields, such as optical commu-
nication, biomedicine, optical manipulation, and imaging [5–7].

When describing a shaped beam for use in analytical scattering
theories, such as the generalized Lorenz-Mie theories (GLMTs) [8] and
the Null-field method [9], electric and magnetic fields are required to
be expanded in terms of proper wave harmonics, e.g. vector spherical
wave functions (VSWFs) for isotropic medium, or quasi-VSWFs for
anisotropic medium [10]. The calculation of expansion coefficients, or
the sub-coefficients which are called as beam shape coefficients (BSCs),
is one of the key issues when dealing with any type of shaped beam.
With decades of efforts devoted to the description of an arbitrary
shaped beam, the BSCs of an arbitrary shaped beam can be evaluated
by several methods [11], including quadratures, finite series, localized
approximations (LA), and the integral localized approximation (ILA)
[12]. In the case of Gaussian beams, whose field expressions are not

exact solutions to Maxwell's equations, the most efficient method for
evaluating the BSCs has been the LA method [13]. The reconstructed
fields based on LA BSCs are exact solutions to Maxwell's equations,
which provide good approximations to the origin fields. The LA method
has also been applied to the scattering of Bessel beams in several
studies [14–16]. Application of LA for a Bessel beam is valid when the
half-cone angle of the Bessel beam is relatively small [15]. However,
significant errors occur when the half-cone angle is sufficiently large
[17,18]. Therefore, a rigorous and efficient way for the calculation of
BSCs of a Bessel beam is needed.

Accurate BSCs of a Bessel beam can be obtained by a double
quadrature over spherical coordinates, which is the original method
used in the GLMTs [19,20]. Numerical evaluation of double quadrature
for a zero-order Bessel beam was used by Preston et al. [21], and was
also applied to a high-order Bessel beam by Mitri [22]. Although it is
very time-consuming and complex in the numerical evaluation, this
method provides accurate BSCs which can be used for validation of
BSCs obtained using other approximate methods [14]. Double quad-
rature can be reduced to single quadrature for a zero-order Bessel
beam, as shown by Cizmar et al. [23]. This reduction of quadrature was
achieved based on an angular spectrum representation (ASR) of a
Bessel beam, where the Bessel beam is regarded as a superposition of
partial plane waves with delta distribution in polar angle δ α α( − )0 .
Based on the ASR description of a zero-order Bessel beam, the results
were further improved by Taylor and Love [24] who derived an
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analytical expression of BSCs without integral. The BSCs were obtained
by a superposition of the expansion coefficients of partial plane waves
which consist of the plane wave spectrum of a Bessel beam. The
calculation of BSCs of Bessel beams based on the angular spectrum
representation was also analyzed by Lock [25], where a general zero-
order Bessel beam was considered. The same procedure was also
extended to the case of polarized Bessel beams of arbitrary order by
Chen et al. [26], and was applied by Ma and Li [27] to a study of an
unpolarized Bessel beam.

BSCs in analytical form allow scattering calculations to be carried
out considerably more efficiently and accurately. This is of advantage
for problems where a large number of scattering calculations must be
performed, e.g. forces and torque prediction in an optical tweezers
[28]. The existing approaches for calculating BSCs analytically are
based on the ASR description of a Bessel beam. In these approaches, a
Bessel beam is required to be represented as a plane wave spectrum
using the ASR, and then analytical expressions of BSCs are obtained by
a superposition of the expansion coefficients of each partial plane wave.
In this paper, we show that the analytical expressions of BSCs of a
circularly symmetric Bessel beam (whose energy density and Poynting
vector component along its propagation direction are circularly sym-
metric in the transverse plane) can be obtained in a straightforward
way by performing the integrals directly, it is a simpler approach than
the existing methods.

The other parts of this paper is organized as follows. Derivations of
analytical expressions of BSCs is presented in Section 2 for a circularly
symmetric Bessel beam. The correctness and convergence of the BSCs
are verified numerically in detail in Section 3. Conclusions are given in
Section 4.

2. Derivations of beam shape coefficients

A geometry of a spherical particle illuminated by an off-axis Bessel
beam is shown in Fig. 1. Two Cartesian coordinate systems, Oxyz and
O uvwb , are used. The Oxyz is attached to the particle and the O uvwb is
attached to the Bessel beam. The axesO ub ,O vb andO wb are parallel to the
axesOx,Oy andOz, respectively. The coordinates ofOb inOxyz are denoted
as x y z( , , )0 0 0 . In the description of an ideal Bessel beam, two different
procedures are commonly applied to obtain the fields of an l-order Bessel
beam: (a) the ASR procedure which obtains the fields by a superposition of

partial plane waves, and (b) the Davis procedure which obtains the fields
from a polarized vector potential. Although the two different procedures
give two seemingly different answers for the fields, it turns out that the
functional dependence of the two answers is identical for circularly
symmetric Bessel beams. A general description for circularly symmetric
Bessel beams was derived recently [29,30]. This generalization of the
description makes the Davis type Bessel beam and the ASR type Bessel
beam merely the two simplest cases of an infinite number of possible
circularly symmetric Bessel beams, corresponding to different values of the
arbitrary function g α( )0 . The electric field components of a general
circularly symmetric Bessel beam with its beam center locating at an
arbitrary point x y z( , , )0 0 0 are
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where superscript (1, 0) which is reminiscent of x-polarization is used, and
σ k ρ=G t G, ρ x x y y= [( − ) + ( − ) ]G 0
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The transverse and longitudinal wave numbers are k k α= sint 0 and
k k α= cosz 0, respectively. The l-order Bessel function of the first kind is
denoted as J (⋅)l . The wavenumber is k , and α0 is the half-cone angle of the
Bessel beam which is defined with respect to the axis of wave propagation.
When g α cosα( ) = (1 + )/40 0 , the expressions in Eq. (1) reduce to those of a
Davis circularly symmetric Bessel beam used in [25,31]. When g α( ) = 1/20 ,
they reduce to those of an ASR Bessel beam used in [23,24,26]. The
expressions for magnetic fields are not presented for the sake of brevity,
since they can be obtained from electric fields in Eq. (1) by the relation

i ωB r E r( ) = ( / )∇ × ( ). The time dependence iωtexp( ) is assumed in this
paper.

Following the theoretical treatments in the GLMT, the radial
electric and magnetic field components derived using the Bromwich
scalar potentials are (Sec. III.3 in [8])

Fig. 1. Geometry of a spherical particle illuminated by an off-axis Bessel beam. A Cartesian coordinate systemOXYZ is attached to the particle, and a Cartesian coordinate systemO uvwb

is attached to the Bessel beam.
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