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A B S T R A C T

It is well-known that bandpass filtering will lead to edge extraction in image processing. However, the difference
between single- and double-sided bandpass filtering has never been compared and investigated in the literature.
We investigate the difference between single- and double-sided bandpass spatial filtering in a 4-f coherent
optical image processing system. We find that single-sided filtering can approximate the operation of a first-
order derivative, while double-sided filtering gives a second-order derivative. Simulations and optical
experiments confirm our findings.

1. Introduction

A standard two-lens coherent optical system with both lenses
having the same focal length f but separated by 2f, is known as the
4-f spatial filtering system in coherent image processing [1–4]. The
confocal plane of the optical system is called the pupil plane or the
Fourier plane [5,6]. On the Fourier plane, the Fourier transform or the
spectrum of the input image is displayed, where the input image is
located on the front focal plane of the first lens. The spectrum of the
image is a collection of different spatial frequencies of the image.
Coherent image processing can be performed by inserting a pupil
function on the confocal plane as the pupil function will modify the
original spectrum or filter the different spatial frequencies of the input
image. For example, by inserting a small hole centered along the optical
axis (along z) of the optical system, we perform low-pass spatial
filtering of the input image, i.e., low spatial frequencies of the image
will be allowed to pass through the optical system, while the back
focal plane of the second lens displays the low-pass version of the
original input image. The classical paper by R. A. Phillips has
illustrated clearly the interesting effect of low-pass filtering [7]. By
the same token, band-pass spatial filtering can be performed by
inserting an annulus on the Fourier plane. In contrast to temporal
frequency (cycles per unit time) in electrical signals, spatial frequency
(cycles per unit length) in optics takes on some physical meaning.
Negative temporal frequencies do not exist physically, but negative

spatial frequencies exist in optics. For example, transparency of
t(x, y)=cos(2πax)= [exp(i2πax) + exp(−i2πax)]1

2 has spatial frequencies
associated with the x-coordinate f = ± ax . When the transparency is
illuminated by a plane wave normally of wavelength λ, two outgoing
plane waves at angles θ =sin ( ± λa)±

−1 will emerge, where the angles are
measured with respect to the optical axis. Hence temporal signals can
be filtered at a particular “positive” frequency, while spatial images can
be filtered at positive and/or negative frequencies. Indeed it is well
known that by half-plane filtering in the Fourier plane, known as the
Foucault test, we can detect wavefront errors of a lens or mirrors [8].
To generalize half-plane filtering a bit further, positive and negative
frequencies could be filtered differently and that leads to the well-
known optical implementation of the Hilbert transform for the
observation of phase objects in coherent systems [9]. In passing, we
want to point out that the Hilbert transform also has been investigated
in the context of incoherent image processing [10]. In this paper, we
want to investigate simple bandpass filtering. To be precise, we want to
explore single-sided bandpass filtering and double-sided bandpass
filtering, and examine their differences. The reason to investigate
bandpass filtering is that it has the ability to extract edge information
of an image. Edge detection is a fundamental and important basic
operation in image processing, machine vision and computer vision,
particularly in the area of feature extraction [11].
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2. Basic coherent optical image processing system

Fig. 1 is the standard 4-f optical coherent image processing system.
On the input plane (or the object plane), we have an image in the form
of a transparency, t(x, y), which is assumed to be illuminated by a plane
wave normally. According to Fourier optics, an ideal lens is a Fourier
transformer [5,6]. The field distribution, apart from some constant, on
the back focal plane of lens L1 is given by [5,6]

ψ = {t(x, y)} =T( k x
f

, k y
f

).p k = k x
f ,k = k y

f

0 0
x

0
y

0
(1)

where T( , )k x
f

k y
f

0 0 is the Fourier transform or the spectrum of t(x, y),
and k =2π/λ0 is the wave number of the plane wave. The two-dimen-
sional spatial Fourier transform of a signal f(x, y) is given by

∬{f(x, y)}=F(k , k )= f(x, y)exp(ik x + ik y)dxdy.x y

−∞

∞

x y
(2a)

and its inverse Fourier transform is

∬{F(k , k )}=f(x, y)= 1
4π

F(k , k )exp(−ik x − ik y)dk dk .−1
x y 2

−∞

∞

x y x y x y

(2b)

where the transform variables are spatial variables, x, y [meter], and
spatial radian frequencies, k , kx y [radian/meter]. We want to point out
the convention used in the paper. We have used exp(ik x + ik y)x y as the
exponent for the spatial Fourier transform, and exp(−iωt) as the
exponent for any temporal Fourier transform, where ω and t are the
temporal radian frequency variable [radian/second] and the time
variable [second], respectively. This is done to be consistent with the
engineering convention for a travelling plane wave. In this convention,
Re{A exp [i(ωt−k z)}0 denotes a plane wave travelling in the +z direc-
tion, where A is the amplitude of the wave, ω is a temporal frequency
and k0 is a propagation.

Hence the confocal plane in Fig. 1 of the optical system is often
called the Fourier plane. The spectrum of the input image is now
modified by pupil function p(x, y), and the field immediately behind the

pupil function is then T ( , )p(x, y)k x
f

k y
f

0 0 , which is Fourier transformed
again by Lens L2, giving the field on the image plane as

⎧⎨⎩
⎫⎬⎭ψ = T( k x

f
, k y

f
)p(x, y) ,pi

0 0
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fx
0
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0

(3)

which can be evaluated, in terms of convolution, to give

ψ =t(−x, −y)* {p(x, y)}pi k = k x
f ,k = k y

fx
0

y
0

⎛
⎝⎜

⎞
⎠⎟=t(−x, −y)*P k x

f
, k y

f
=t(−x, −y)*h (x, y),0 0

c
(4)

where P is the Fourier transform of p. The convolution integral in Eq.
(4) is defined as

∬g(x, y)=g (x, y)*g (x, y)= g (x′, y′)g (x − x′,y − y′)dx′dy′,1 2
−∞

∞

1 2
(5)

where * denotes convolution of two functions g (x, y)1 and g (x, y)2 . The
optical system under consideration is called a coherent optical system
in that complex quantities are manipulated. Once we have found the
complex field on the image plane given by Eq. (4), the corresponding
image intensity is

I (x, y)=ψ (x, y)ψ* (x, y)= t(−x, −y)*h (x, y) ,i pi pi c
2

(6)

which is the basis for coherent image processing. From Eq. (4), we can
recognize that

h (x, y) = {p(x, y)} =P( k x
f

, k y
f

)c k = k x
f ,k = k y

f

0 0
x

0
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0
(7)

is the coherent point spread function (CPSF) of the two-lens sys-
tem [5,6]. Hence, the expression given by Eq. (4) can be interpreted in
that the inverted image of t(x, y) is processed by the CPSF given by Eq.
(7). The CPSF, and therefore the image processing capabilities can be
varied by simply changing the pupil function, p(x, y). For example, if
we take p(x, y)=1, which means we do not modify the spectrum of the
input image, h (x, y)c according to Eq. (7) becomes a delta function and
the output image from Eq. (4) is ψ (x, y)∝t(−x,−y)*δ(x, y)=t(−x,−y)pi .
The result is an inverted image, consistent with imaging in geometrical
optics. While the CPSF is given by the Fourier transform of the pupil
function, by definition, the corresponding coherent transfer function
(CTF) is the Fourier transform of the CPSF:
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We, therefore, observe that spatial filtering is directly proportional
to the functional form of the pupil function. For example, if we choose

yp(x, )=circ(r/r )0 , where r = x + y2 2 and circ(r/r )0 denotes a value 1
within a circle of radius r0 and 0, otherwise, from the interpretation of
Eq. (8), we see that for this kind of chosen pupil, i.e., a hole or circular
opening of radius on the pupil plane, filtering is of lowpass character-
istic as the opening of the hole on the pupil plane only allows physically
the low spatial frequencies to go through. For highpass filtering, we
can, for example, choose p(x, y)=1−circ(r/r )0 , i.e., a circular blocking of
radius on the pupil plane.

3. Single- and double-sided bandpass filtering

After a brief review on coherent optical image processing in the last
Section, we are now in a position to investigate the differences between
single- and double-sided bandpass filtering.

3.1. Single-sided filtering

For brevity, we will perform 1-D mathematical analysis. For single-
sided filtering, let us choosep(x)=rect((x−x )/x )c 0 , where rect(x/x ) = 10
for x < x /20 and 0, otherwise. Physically, the pupil function is
considered as a slit of width x0 centered at xc, along the y-direction.
The pupil is shown is Fig. 2(a). According to Eq. (8), the CTF is
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which is shown in Fig. 2(b). We see that this is band-pass filtering with
the center frequency at x k /fC 0 and the width of the passband of x k /f0 0 .

The system's CPSF, according to Eq. (7), is

⎛
⎝⎜

⎞
⎠⎟h (x)= {rect((x − x )/x )} =x exp ik xx

f
sinc( k xx

2πf
),c C 0 k = k x

f
0
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x

0
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where sinc(x)= sin(πx)
πx . This CPSF, as it turns out, can approximate a first-

order derivative of the original image. We will explain this in the next
Section when we report our simulation results.

Fig. 1. Standard 4-f optical coherent image processing system.
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