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A B S T R A C T

In this article as a diffractive optical element we consider a composed four-sector binary grating under Gaussian
laser beam illumination. The angular sectors are bounded by the directions y x= and y x= − , and consist of
parts of a binary rectilinear grating; thereby, two neighboring parts are shifted by a half spatial rectilinear
grating period. The diffracted wave field amplitude is calculated, showing that the straight-through, zeroth-
diffraction-order beam is an amplitude-reduced Gaussian beam, and the higher-diffraction-order beams,
deviated with respect to the propagation axis, are non-vortex beams described by modified Bessel functions. The
transverse intensity profiles of the higher-diffraction-order beams, numerically and experimentally obtained,
have form of a four-leaf clover; they are similar to the Laguerre-Gaussian LG(0,2) beam (with radial mode
number n = 0 and azimuthal mode number l = 2) described by circular cosine function, in a paraxial, far-field
approximation.

1. Introduction

Besides the fundamental mode (Gaussian beam), the Hermite–
Gaussian (HG) and Laguerre–Gaussian (LG) beams are also solutions
of the paraxial wave equation [1]. Lot of research has been done to
analyze their theoretical and experimental properties, and to investi-
gate their applications in the basic optical sciences and in other
scientific fields (see e.g. Ref. 2 and references therein). Linearly
polarized LG beams with nonzero azimuthal mode number are carriers
of screw dislocations and possess orbital angular momentum (OAM)
[3]. They are optical vortex beams. In the field of singular optics the
mostly used are LG beams with zero radial mode number. The family of
LG beams covers the cases of the equiaxial linear combinations
(addition or subtraction) of two LG beams with equal azimuthal mode
number value l, but with opposite signs of l (opposite orientations of
their OAMs), as well. As a result, the two coupled vortex beams create a
beam without OAM (no topological charge), possessing profiles de-
scribed by circular functions lφcos( ) or lφsin( ).

The linearly polarized HG(m,n) beams have degenerate edge
dislocations in their wavefronts and do not possess OAM [3].

Nye and Berry have described, classified and analyzed the wave-
fronts defects in wave trains and monochromatic waves [4]. In laser
beams having structure of transverse cavity modes, edge dislocations
occur as black lines between π-shifted in phase mode spots; the

simplest is the TEM01, where the zeroth-value intensity line divides
the beam into two parts corresponding to phase shift of π. In [5] the
authors showed that, an edge dislocation of the wavefront can be
produced experimentally by using two binary periodic gratings, shifted
by half a period on a line of zero amplitude. Then, in the process of
diffraction, the incident Gaussian laser beam is divided with a dark line
into two bright spots. Whereas, a binary fork-shaped grating with an
edge dislocation in direction θ = 0 produces mixed screw-edge disloca-
tion, as shown experimentally in [5].

The vortex beams are created in laser resonators, or by using
diffractive optical elements which transform the Gaussian beam into a
vortex one, such as spiral phase plate [6–8], helical axicon [9–12],
helical lens [13], computer-generated holograms [14,15], fork-shaped
gratings [16,17] etc. The computer-generated gratings (CGGs) accom-
panied with the photo-reduction methods have an advantage over the
expensive lithographic methods. Except the simple, fast and cheap
production, they make possible the creation of combined gratings,
which can substitute the laser resonators in making new interesting
laser modes. Liquid crystal spatial light modulators make this proce-
dure even more flexible ensuring high efficiency and fast reconfigura-
tion.

In this article we consider a CGG constructed by inserting parts of a
binary rectilinear grating into the four equal angular sectors, bounded
by the directions y x= and y x= − (Fig. 1). Thus, two neighboring parts
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of the grating are shifted by a half spatial grating period along x axis.
We analytically calculate the diffraction pattern obtained by illuminat-
ing the grating with a Gaussian laser beam, which enters into the
grating plane with its waist and intersects the grating plane centre with
its axis. The far-field diffraction patterns of the higher-diffraction-order
(HDO) beams, in a paraxial approximation are similar to Hermite-
Gaussian HG(1,1) or cosine-LG(n=0,l=2) laser mode: four bright spots
are nested in four quadrants divided by crossed one-dimensional phase
dislocations. With this method we create in the HDOs beams with
coupled optical vortices [18] and crossed dark lines, which are of
interest for many applications as optical trapping, optical communica-
tion, angular alignment etc.

2. Construction and transmission function of the grating

The computer generation of this grating consists in inserting parts
of a binary rectilinear grating into the four equal angular sectors,
bounded by the directions y x= and y x= − . The area of each of the
sectors, numbered by n=(1), (2), (3) and (4), is successively covered by
a negative (in (1) and (3)) and positive (in (2) and (4)) gratings, both
possessing the same period d ξ= 2 0 (Fig. 1). In a rectangular coordinate
system, whose ordinate is the axis of symmetry of both types of
gratings, their transmission functions are expressed by the cosine
Fourier series as
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Since we will treat the problem of diffraction of a Gaussian laser
beam by the computer-generated gratings in cylindrical coordinate
system, we will use the polar coordinates r φ( , ) for the grating's plane.
The pole is situated in the intersection point of the y x= and y x= −
lines. Then, the transmission functions t r φ( , )g
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white central line) and t r φ( , )g
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gratings, are defined as
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In Eq. (1) and Eq. (2) the transmission coefficients are
m π π msinc((2 − 1) /2) = 2(−1) /( (2 − 1))m( −1) m( = 1, 2, 3, ... ), while the

sign “+” in front of the sum stands for the positive grating.
As it is seen in Fig. 1, the n-th quadrant is occupied by one of the

upper mentioned gratings. Each of them is an angular sector of π/
2 rad, which in absence of the grating, is a completely transparent
aperture between the directions φ n π= (2 − 1) /4 and φ n π= (2 + 1) /4.
Using the Heaviside unite step function
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we define the n-th sector aperture transmission function as
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The transmission function of the composed grating in Fig. 1 is a
sum of the four sector transmission functions t r φ t φ t r φ( , ) = ( ) ( , )a
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The grating whose transmission function is given by expression Eq.
(4) will be used as an optical diffracting device in our further investigation.

3. Diffraction of a Gaussian laser beam by the composed
four-sector grating

The Gaussian beam is normally incident on the plane of the grating,
with its propagation axis (z axis of the cylindrical coordinate system)
passing through its centre, and its waist located in the plane of the
grating. Thus, the incident beam is defined by:
U r φ z r w ikr q( , , = 0) = exp(− / ) = exp(− /2 (0))i 2

0
2 2 where w0 is the beam

waist radius, k π λ= 2 / is the propagation constant and q (0) is the beam
complex parameter in the waist plane. If the grating is absent, at
distance z from the origin the beam has a complex parameter
q z z ikw( ) = + /20

2 , with q ikw iz(0) = /2 =0
2

0, and z0 being the beam
Rayleigh distance. The field of the diffracted light is defined by the
Fresnel-Kirchhoff integral
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The polar coordinates ρ θ( , ) characterize the observation plane Π
situated at distance z from the grating. Substitution of the incident
beam and the transmission function Eq. (4) in the diffraction integral
gives
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The part of the solution U ρ θ z∑ ( , , )n m=1
4

=0 defines the zeroth
diffraction order

Fig. 1. The computer-generated four-sector grating.
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