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A B S T R A C T

The intensity distribution and the phase properties, especially the Gouy phase and the phase singularities are
studied in a strongly focused Gaussian beam with an off-axis vortex. The symmetry relation of the focused field
is also derived. It is found that the off-axis vortex induces a rotation of the field pattern, the transverse focal
shift, and the asymmetric distribution of the phase singularities. Our results also show that the initial position of
the off-axis vortex in the incident beam strongly influences the distance of the transverse focal shift, but does not
have an effect on the Gouy phase along the central axis.

1. Introduction

Optical vortices, also called phase singularities in an optical wave
field have been studied a lot [1–4] for their many potential applica-
tions, like in optical trapping [5], microscopy [6,7] and wireless
communication [8]. Because of the special properties, such as the
rotation of vortices with the same charge in the far field [9], off-axis
vortices nested in a beam have drawn much attention in recent years.
Investigations on the trajectories of vortices have been done in graded-
index media [10] and for a canonically launched vortex dipole [11]. The
vortices behavior, like attraction and annihilation have been examined
for two vortices with the same topological charge and with the opposite
charge in a tightly focused field [12]. The propagation of a Gaussian
beam with vortices with arbitrary topological charges through a tilted
lens was studied in [13]. In [14] optical vortices were generated by
three different types of custom-designed wavefronts in the experiment
and the propagation was discussed. The dynamics of vortices was also
examined in a nonuniform Bose-Einstein condensate [15]. However,
except [12] most works concentrate on the propagation properties in
the scalar case. When a field is strongly focused, the scalar description
is not sufficient and a vector analysis must be adopted. For a better
understanding of the nature of the off-axis vortices in propagation, we
choose to study the properties of off-axis vortices in a high numerical
aperture (NA) system.

The Gouy phase, as a fundamental property in a focused field, since
its first observation in 1890s [16,17], has been examined in a wide
range of studies [18–22]. Although this phase anomaly plays a crucial
role in many applications, such as in mode conversion [23], optical
tweezers [24], propagation dynamics of optical vortices [25] and
interference microscopy [26], the Gouy phase is not always taken into

consideration when a strongly focused field is studied.
In the present article, the Gouy phase as well as the intensity and

phase behaviors of a Gaussian beam with an off-axis vortex in a high
NA system is analyzed. The Richards-Wolf vectorial model is used to
derive the expressions of the focused field. As we will demonstrate, the
parameters which characterize the off-axis vortex strongly influence the
phase behavior and the intensity distribution of the focused field,
especially the transverse focal shift, while the Gouy phase and phase
singularities exhibit different behaviors for the three components of the
field.

2. Theory

2.1. Focused field with multi-vortices at arbitrary positions

Assume there are N vortices of charge mk located at r r= k, ϕ ϕ= k,
embedded in a Gaussian beam. According to [9] the amplitude
distribution of the electric field at the beam waist ω0 can be expressed
as

∏V r ϕ e re r e( , ) = ( − ) ,
k

N
r ω ϕ

k
ϕ m

0
=1

− / ±i ±i | |
k k2

0
2

(1)

with r the radial distance and ϕ the azimuthal angle. When mk is
positive, the sign of ϕ and ϕk is positive and vice versa.

Let us consider a Gaussian beam with the electric field polarized
along the x-direction and the electric field amplitude described by Eq.
(1). When such a beam is incident upon an aplanatic, high numerical
aperture focusing system (see Fig. 1) of focal length f with a semi-
aperture angle α (here we assume that the entrance plane of the
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focusing system is coincident with the waist plane of the Gaussian
beam), the electric field in the focal region at the observation point P
can be expressed using the Richards-Wolf vectorial diffraction model
[27] as
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with the wave number k is π λ2 / and λ is the wavelength. In this
equation ρ ϕ z( , , )s s s are the cylindrical coordinates in image space, where
at the origin O (in Fig. 1) ρ z= = 0s s . V θ ϕ V r ϕ( , ) = ( , )0 0 since r f θ= sin
according to the sine condition in this focusing system. It is also
convenient to use the dimensionless Lommel variables u, v [27] to
describe the position of an observation point instead of zs and ρs,
namely:

u kz α= sin ,s
2 (3)

v kρ α= sin .s (4)

Eq. (2) can be rewritten as:
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2.2. Gouy phase

The Gouy phase, δ describes how the phase of an actual focused
field differs from that of a non-diffracted wave (see [28], Sec.8.8.4). In a
strongly focused field, as expressed by Eq. (5), there are three electric
components and for each individual component a Gouy phase can be
defined as

δ u v ϕ ψ u v ϕ u kR( , , ) = ( , , ) − sign[ ] ,x s x s (6)

δ u v ϕ ψ u v ϕ u kR( , , ) = ( , , ) − sign[ ] ,y s y s (7)

δ u v ϕ ψ u v ϕ u kR( , , ) = ( , , ) − sign[ ] ,z s z s (8)

here ψ j x y z( = , , )j denotes the phase of ej and R is the distance from the
observation point P to the focus O, i.e.
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and sign denotes the sign function, namely

⎧⎨⎩u u
u

sign[ ] = −1 when < 0,
1 when ≥ 0. (10)

3. An off-axis vortex embedded in the Gaussian beam

Consider an off-axis vortex with m = − 1 nested in the Gaussian
beam at position r a=1 , ϕ = 01 . Eq. (1) changes into

V r ϕ e re a( , ) = ( − )r ω ϕ
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. Substituting this expression into Eq. (5)
and applying the following identity:
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with Jn being the first kind Bessel function of order n, we can calculate
the electric field near the focus as:
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It follows from Eqs. (12) to (25) that these three components obey the
following symmetry relations:
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Fig. 1. Illustration of a high-numerical-aperture system. The origin O of a Cartesian
coordinate system is taken at the geometrical focus.
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