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A B S T R A C T

The classical harmonic oscillator with time dependent mass and frequency is investigated to obtain a closed
form exact analytical solution. It is found that the closed form analytical solutions are indeed possible if the time
dependent mass of the oscillator is inversely proportional to the time dependent frequency. The scaled
wronskian obtained from the linearly independent solutions of the equation of motion of the classical oscillator
is used to obtain the solution corresponding to its quantum mechanical counterpart. The analytical solution of
the present oscillator is used to obtain the squeezing effects of the input coherent light. In addition to the
possibilities of getting the squeezed states, the present solution will be of use for investigating various quantum
statistical properties of the radiation fields. As an example, we investigate the antibunching of the input thermal
(chaotic) light coupled to the oscillator. Therefore, the appearance of the photon antibunching does not warrant
the squeezing and vice-versa. The exact solution is obtained at the cost of the stringent condition where the
product of time dependent mass and frequency of the oscillator is time invariant.

1. Introduction

In order to explain the basic physics, the model of a simple
harmonic oscillator (SHO) plays an important role. It is because the
model of SHO gives exact solution both in classical and in quantum
mechanical pictures. The incorporation of dissipation and the anhar-
monicity are very often necessary to take care the physical situations
correctly. It is difficult and sometime it is impossible to get the closed
form analytical solution of the oscillator subject to damping and or
anharmonicity. We do not have any problems with the dissipative/
nonconservative systems, as long as we are lying in the domain of
classical physics. The classical mechanics is sufficiently robust to take
care the dissipation. However, the dissipation is a big problem in
quantum mechanics where the Hamiltonian depends on time. The
straight forward canonical quantization to the problem of damped
oscillator does not hold good. It is because the fundamental commu-
tation relation for the operators goes to zero as the time t becomes
infinity. In other words, the solution to the damped quantum oscillator
in Heisenberg and in Schroedinger pictures require some special
attentions. Lot of works have already been done to quantize the
dissipative systems [1–10]. Note that the harmonic oscillator with
time dependent mass and constant frequency may lead to the problem
of a damped harmonic oscillator [2–4]. By using the time invariance of
Wronskian, the quantization of the oscillator with time dependent
mass and frequency are available in these publication [2–4]. Of course,
lot of people have investigated these problems by using various
methods. A recent review on this subject is devoted to take care these

methods and their consequences [10].
Apart from the mathematical interest, the quantum harmonic

oscillator with time dependent mass and/or time dependent frequency
have significant roles in many branches of physics. Colegarve et.al [11]
showed that the problem of a Febry-Perot cavity in contact with a heat
reservoir lead to the problem of harmonic oscillator with time
dependent mass and constant frequency. The harmonic oscillator with
time dependent frequency describes the quantum motion of the
particle in a Paul trap [12] and the corresponding equation of motion
could be described by the well known Mathieu equation (Appendix A).
In the studies of expanding universe, Lemos and Natividate [13] have
taken care the problem of a harmonic oscillator with time dependent
frequency and constant mass. In addition to the above examples, the
quantum harmonic oscillator with time dependent mass and /or time
dependent frequency are extensively investigated for the solutions and
their possible applications in various quantum optical phenomena. For
example, the coherent state for a harmonic oscillator with time
dependent frequency is investigated by Moya-Cessa et.al [14–16]. By
using the invariant operator method [17], Yeon et.al [18] obtained the
squeezing operators for a quantum oscillator with time dependent
frequency. By using the well known Lewis and Reisenfeld [19] invariant
operator approach and by using some time dependent transformation,
the coherent state for a harmonic oscillator with time dependent mass
and frequency and a perturbative potential has also been taken care by
Dantas et.al [20]. The possibilities of getting squeezed state from the
input coherent state coupled to a quantum oscillator with time
dependent mass and frequency are investigated [4]. Of late, Ciftja
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has derived the exact wavefunction of a harmonic oscillator with time
dependent mass and frequency [21]. The possibilities of getting
squeezed states from the quantum driven harmonic oscillator of time
dependent mass and frequency (DHTDMF) are studied by using the
number state basis [22] and by using coherent state basis [3]. It is also
interesting to note that the propagator for a quantum DHTDMF has
also been derived [23]. Of late, we establish that the model of a
quantum DHTDMF arises when a strong pump interact with the
second order nonlinear medium of very weak absorption [3]. It is also
identified that the Hamiltonian of a quantum DHTDMF coincides
exactly with that of the Two-photon Hamiltonian [24].

The present communication is put in the following manner. The
next section deals with the Hamiltonian of a classical oscillator with
time dependent mass and frequency. The solution of the quantum
mechanical counterpart is obtained by using the scaled Wronskian
defined by two linearly independent solutions. Of course, the solutions
and the corresponding dynamics of the quantum oscillator are always
unitary. In spite of the several investigation in the subject of oscillator
with time dependent mass and frequency, we, however, do not find any
attempts where the exact analytical solution is explored. Therefore, the
present exact solution of a harmonic oscillator with time dependent
mass and frequency is a fresh one and will be of help for the further
advancement of the subject. The squeezing of the input coherent light
coupled to the oscillator is examined in Section 2.1. The possibility of
an exact solution (in terms of the integral involving the time dependent
frequency) for the oscillator with time dependent mass and frequency
is obtained when the product of mass and frequency is time indepen-
dent. The proposed solution is tested for a physical system. The short
time behavior of the time dependent frequency is found useful for
getting the closed form solutions up to the desired orders in time.

2. The model hamiltonian

The Hamiltonian of a classical simple harmonic oscillator of time
dependent mass M(t) and frequency Ω t( ) is given by

H p
M t

M t Ω t q=
2 ( )

+ 1
2

( ) ( )
2

2 2
(1)

The corresponding equations of motion assumes the following form

q p
M t

p M t Ω t q˙ =
( )

˙ = − ( ) ( )2
(2)

Therefore, q(t) and p(t) are the classical canonical position and
momentum respectively. Finally, we are end up with the following
homogeneous second order linear differential equation with variable
coefficients

q M t
M t

q Ω t q¨ +
˙ ( )

( )
˙ + ( ) = 0.2

(3)

Interestingly, by using a small transformation, the above differential
equation could be obtained from the Mathieu differential equation (see
Appendix A). Now, for M t M bt( ) = (0)exp( ) and Ω t Ω( ) = (0), the Eq.
(3) reduces to the equation of motion for a damped harmonic oscillator
of constant frequency with damping constant b. For constant mass
M t M( ) = (0), the Eq. (3) corresponds the equation of motion of a SHO
of time varying frequency. It is clear that the solution of the equation
(3) assumes the following form

q t A t q A t q( ) = ( ) (0) + ( ) ˙ (0)1 2 (4)

where the parameters A t( )1 and A t( )2 depend on time. The canonically
conjugate momentum is obtained from the knowledge of the position
x(t) (Eq. (4)) involving the first one of the Eq. (2). Now, The parameters
Ai(t) are given by
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where q t( )1 and q t( )2 are two linearly independent solutions of the Eq.
(3). It is clear that A (0) = 11 , Ȧ (0) = 01 , A (0) = 02 and Ȧ (0) = 12 . Now,
the scaled Wronskian corresponding to the differential Eq. (3)
W t M t q t q t q t q t( ) = ( )[ ( ) ˙ ( ) − ( ) ˙ ( )]s 1 2 2 1 is independent of time since

= 0dw
dt

s . The solution (4) may be used to obtain the solution of the
quantum mechanical counterpart of the classical oscillator governed by
the Eq. (3). These may be achieved provided the classical variables
(position q (0) and momentum q̇ (0)) in Eq. (4) are replaced by their
corresponding operators along with the fundamental commutation
relation. Note that the time dependent variables Ai are to be taken as c-
numbers since q1 and q2 are the solutions of a c-number differential
equation. It is because, these variables depend on the solutions of c-
number differential equations. Therefore, the solution for the quantum
mechanical oscillator follows immediately as

q t A t q A t
M

p( ) = ( ) (0) + ( )
(0)

(0)1
2

(7)

where the momentum operator p t M t q( ) = ( ) ˙ . Now we calculate the
fundamental commutation relation for the position and momentum
operators

q t p t W t
W

q p i[ ( ), ( )] = ( )
(0)

[ (0), (0)] = .s

s (8)

where = 1 is assumed. The validity of the above fundamental
commutation (8) ensures that the solution of the classical damped
harmonic oscillator is valid for the solution of its quantum mechanical
counterpart when the classical position and classical momentum are
replaced by their corresponding operators. The invariance of the scaled
Wronskian does the job of quantization of the harmonic oscillator with
time dependent mass and frequency. The availability of the quantum
mechanical solution governed by Eq. (7) and its canonically conjugate
operators p may be used for the calculation of second order variances
in terms of the initial states of the radiation fields.

2.1. Squeezing of input coherent light

In order to have some glimpse on the possibilities of the production
of squeezed states, we define the position and momentum operators in
terms of the usual dimensionless annihilation (a) and creation a( )†

operators. Therefore, we have

q t
M t Ω t

a t a t p t i M t Ω t a t a t( ) = 1
2 ( ) ( )

( ( ) + ( )) ( ) = − ( ) ( )
2

( ( ) − ( ))† †

(9)

where = 1 is used. The annihilation operator at t=0 (i.e a (0)) imposes
the condition on the ground state (|0>) of the harmonic oscillator with
a (0)|0 > = 0. By using Eq. (8), it is easy to check that a t a t[ ( ), ( )] = 1† .
Now, by using Eq. (9), it is possible to express the quantized version of
the classical Hamiltonian (1). Hence, We have

⎧⎨⎩
⎫⎬⎭H Ω a t a t= ( ) ( ) + 1

2quantize
†

(10)

Now, We define the dimensionless quadrature operators
X t M t Ω t q t( ) = ( ) ( ) ( ) and P t p t( ) = ( )

M t Ω t
1

( ) ( )
. Now, these dimension-

less quadrature operators X(t) and P(t) are expressed in terms of the
annihilation and creation operators at t=0. Therefore, we have
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