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A B S T R A C T

We present a method to make optical mosaic orthogonally crossed gratings by utilizing information about both
main periodic directions simultaneously. The whole mosaic system for orthogonally crossed gratings is set up
based on the dual Lloyd's mirror interferometer that fabricates orthogonally crossed gratings through a single
exposure. The interference fringes formed by the diffractions of the exposure beams from the exposed grating
areas are used as the reference to fine tune the position and attitude of the exposure beams relative to the
substrates during consecutive exposures. A procedure to make mosaic for two main periodic directions
simultaneously is proposed based on the presupposition that the angle between two sets of main lattice lines is
constant during the mosaic. Experimentally we made a 2×1 mosaic crossed grating with a period of 574 nm in
(30+30) mm ×35 mm area. The peak-valley errors of the (−1, 0)th- and (0, −1)st-order diffraction wavefronts
over the whole mosaic grating area are 0.104λ and 0.163λ, respectively.

1. Introduction

Precise planar displacement measurement techniques are in de-
mand in various fields such as semiconductor manufacturing [1],
microscopic techniques [2], precision machinery [3], and so on. The
most commonly used methods to measure planar displacement are
laser interferometers and linear encoders. Laser interferometers offer a
wide measurement range up to several meters with nanometric
resolution, but the accuracy is subject to air turbulence [4]. In
comparison with laser interferometers, linear encoders are more stable
to environmental disturbance and less expensive [5,6]. A combination
of two linear encoders can accomplish the measurement of planar
displacement [7], but the combination is bulky and the linear encoder
can only obtain position information on its assembled axis. To solve the
above problems, planar encoders have been developed. A planar
encoder, comprised of a crossed grating and a single optical head, is
able to measure two-dimensional displacements simultaneously with a
single measuring point and compact structure.

Planar encoders have been used in some modern lithography
steppers [8,9] and precision machine tools [10]. The measuring ranges
depend on the size of the crossed gratings. In recent years, the
maximum diameter of the wafer used in the semiconductor industry
is increasing and a transition from 300 mm to 450 mm is the current
trend [11,12]; on the other hand, the sizes of optical components in

some precision equipment such as astronomical telescopes and aero-
space facilities are becoming much larger [13]. All the above applica-
tions require the planar encoders to have large measuring ranges. For
this aim, Shimizu et al. [14] proposed the concept of aligning multiple
crossed gratings in a matrix on a plane to extend the measuring ranges
along the x and y axes. But this design needed a complicated optical
head and complex signal processing, and the relative shift between
multiple crossed gratings during measurement would result in mea-
surement errors. Therefore, it is necessary to fabricate a large-size
crossed grating on a single substrate. However, fabricating large
gratings by holographic exposure requires large-aperture collimated
exposure beams with low-distortion wavefront, which is costly and
technically difficult.

To overcome these difficulties, researchers at MIT developed the
scanning beam interference lithography (SBIL) that uses two small
Gaussian beams (~1 mm diameter) to generate large-area gratings by
scanning a resist-coated substrate [15,16]. The phase of exposure
fringes is locked by an acousto-optic heterodyne, and the substrate
displacement is controlled by a high-precision stage interferometer. As
an alternative to SBIL, the optical mosaic technique, which makes
multiple exposures in different areas of one substrate, has also been
proposed to extend grating size. For example, Turukhano et al.
presented the holographic phase aperture synthesis technique [17] by
utilizing two collimated beams in a small number of consecutive
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exposures with corresponding reference gratings for phase alignment
to fabricate long gratings; but this technique is lack of attitude
alignment for the substrate and suffers from drift errors between the
substrate and reference gratings. Another representative of the optical
mosaic technique is the self-reference alignment mosaic method [18]
developed by Shi et al. This method uses the latent grating (exposed but
undeveloped grating in photoresist) as the reference to fine tune the
position and attitude of the substrate relative to the exposure beams
during consecutive exposures, getting rid of drift errors and making the
whole system compact. The disadvantage of this method is the
impossibility to obtain high mosaic accuracy and large exposure area
simultaneously when making mosaics along the grating lines. In
addition to the above methods, Gamet et al. proposed a method to
print long gratings adopting a transmission grating illuminated by an
intensity modulated laser beam [19]; Chen et al. presented a step-and-
align interference lithography technique to fabricate large-area seam-
less gratings by stitching the unit exposure area step by step [20].
However, all the above methods to make large gratings aimed at one-
dimensional gratings and little attention was paid to the crossed
gratings. Besides, in order to get metallic crossed gratings, a common
fabrication process is to make photoresist crossed gratings by holo-
graphic exposure, etch the photoresist crossed gratings, and coat the
etched gratings with metallic films or replicate the etched gratings.
Therefore, we mainly concern the fabrication of photoresist crossed
gratings with large size.

In this paper, we focus on the optical mosaic method for ortho-
gonally crossed gratings. We utilize the self-reference alignment mosaic
method [18] to enlarge the size of orthogonally crossed gratings, with
emphasis on how to obtain both high mosaic accuracy and large
exposure area when making mosaics along the main lattice lines (lines
connecting each periodic unit along the two main periodic directions).
The optical mosaic system is an extension from the dual Lloyd's mirror
interferometer system presented in our previous work [21]. The mosaic
system, the mosaic procedure and the experimental results are
presented in the following sections.

2. Mosaic principle

2.1. Orthogonally crossed grating equation

A crossed grating is periodic in two directions. Fig. 1 shows the real
space lattice of an orthogonally crossed grating. We set up a rectangular
Cartesian coordinate system whose x and y axes are parallel to the two
periodic directions respectively and the z axis is perpendicular to the
grating plane. The two main periods are denoted by d1 and d2; κ1 and
κ2 are unit vectors along the two grating vectors. The two sets of main
lattice lines are indicated by the red and blue lines; the main lattice
lines along the y and x axes are named y-direction lattice lines and x-
direction lattice lines respectively.

For ease of discussion in the sections below, we make a brief
introduction about the orthogonally crossed grating equation. Define n
as the unit normal vector of the grating plane, kinc as the wave vector of

the incident beam, and kmn as the wave vector of the (m, n)th
diffracted order. The reciprocal lattice of an orthogonally crossed
grating is given by

mK nKG κ κ= + ,mn 1 1 2 2 (1)

where K1=2π/d1 and K2=2π/d2. The orthogonally crossed grating
equation is given by

kn k k n G k× ( − ) × = , = ,mn mn mninc
2 2 (2)

where k is the wave number of the medium in which the diffraction
order kmn is considered. Solving for kmn from Eq. (2) we have

γk k n= + ,mn mn mn
// (3)

where
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//

inc (4)

γ k k= ± − ( ) ,mn mn
2 // 2 (5)

in which reflected orders take positive sign and transmitted orders take
negative sign. When the crossed grating rotates about an arbitrary axis
c for an infinitesimal rotation dθ while kinc is fixed, the directional
change of (m, n)th diffracted wave vector is given by
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2.2. Mosaic conditions

The optical mosaic method is to make multiple exposures in
different areas of one substrate. After one exposure, the substrate is
moved to the position of next exposure. The substrate has six degrees of
freedom during this movement, and five of them may lead to mosaic
errors.

If the moving distance Δx along the x axis is not an integer multiple
of the grating period d1, phase error for the y-direction lattice lines
between the two exposure areas (i.e., Areas I and II) will be caused, as
Fig. 2(a) shows. Similarly, if the moving distance Δy along the y axis is
not an integer multiple of the grating period d2, there will be a phase
error for the x-direction lattice lines between Areas I and II.

If the substrate has a tilt angle Δθy about the y axis, the period of y-
direction lattice lines between two exposure areas will have an error of
Δd1=d1−d1′=d1−d1/cos(Δθy), which is second order in Δθy and can be
ignored when Δθy«1, as Fig. 2(b) shows. Likewise, if the substrate has
a tilt angle Δθx about the x axis, the period of x-direction lattice lines
between two exposure areas will have an error of Δd2=d2−d2′=d2−d2/
cos(Δθx), which can be ignored when Δθx«1.

Fig. 1. Real space lattice of an orthogonally crossed grating.(For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Mosaic errors. (a) Phase error. (b) Lattice lines’ period error. (c) Lattice lines’
direction error.
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