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A B S T R A C T

In this article we discuss confinement of electrons in graphene via smooth magnetic fields which are finite
everywhere on the plane. We shall consider two types of magnetic fields leading to systems which are
conditionally exactly solvable and quasi exactly solvable. The bound state energies and wavefunctions in both
cases have been found exactly.

1. Introduction

In recent years graphene which is a sheet of carbon atom in
honeycomb lattice [1–3] has drawn widespread attention because of
its possible applications in various devices. The dynamics of charge
carriers or electrons in graphene is described by the (2 + 1) dimen-
sional massless Dirac equation, except that the electrons move with the
much smaller Fermi velocity vF = 106 m/s instead of the velocity of
light c. For graphene to have practical applications one of the most
important problem is controlling or confining the electrons. Attempts
have been made to confine electrons e.g, by using position dependent
mass [4], modulating Fermi velocity [5,6], electrostatic fields or
magnetic fields. However, confinement using electrostatic fields is
usually difficult although zero energy states [7–11] and sometimes
some states of non zero energy [12] can be found using different field
configurations. On the other hand magnetic confinement of electrons
has been studied by many authors. For example, square well magnetic
barrier [13,14], radial magnetic field [15], decaying gaussian magnetic
field [16], hyperbolic magnetic fields [17], inhomogeneous magnetic
fields [18–22], one dimensional magnetic fields leading to solvable
systems [23], etc. have been used to create bound states in graphene. In
particular, of the different types of magnetic fields mentioned above,
there are some smooth inhomogeneous magnetic fields [19–21] for
which the pseudospinor components satisfy equations with quasi
exactly solvable effective potentials [24]. In this context, it may be
noted that inhomogeneous magnetic field profiles can be produced in
many ways e.g, using ferromagnetic materials [25], non planar sub-
strate [26], integrating superconducting elements [27] etc. In the
present paper, our objective is to search for smooth everywhere finite
magnetic fields which produce conditionally exactly solvable effective

potentials [28,29] i.e, potentials which admit exact solutions when
parameter(s) of the model assume particular values. More precisely, it
will be shown that the electrons remain confined for certain values of
the magnetic quantum number while for other values of hte magnetic
quantum number they enter the deconfining phase. We shall also
explore the possibility of obtaining quasi exactly solvable systems when
some of the constraints on the parameters are relaxed. The organiza-
tion of the paper is as follows: in Section 2 we shall present the
formalism; in Section 3 we shall obtain several magnetic fields which
leads to conditionally exactly solvable systems; in Section 4 we shall
examine under what conditions the magnetic fields produce quasi
exactly solvable systems and finally Section 5 is devoted to a conclu-
sion.

2. Formalism

The dynamics of quasi particles in graphene is governed by the
Hamiltonian
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where vF is the Fermi velocity, σ σ σ= ( , )x y are Pauli matrices, and

Π π iπ p A i p A= ± = ( + ) ± ( + ).x y x x y y± (2)

We now choose the vector potentials to be of the form

A yf r A xf r= ( ), = − ( )x y (3)

where the specific form of the function f(r) will be chosen later. With
the above choice of the vector potentials, the magnetic field is given by
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B f r rf r= −2 ( ) − ′( ).z (4)

The eigenvalue equation

H ψ Eψ= ,

where ψ ψ ψ= ( , )T
1 2 is a two component pseudospinor, can be written as

Π ψ ψ= ϵ ,− 2 1 (5)

Π ψ ψ= ϵ ,+ 1 2 (6)

where E vϵ = / F . Now eliminating ψ1 in favor of ψ2 (and vice-versa), the
equations for the components can be written as

Π Π ψ ψ= ϵ ,− + 1
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Since the magnetic field is a radial one, the pseudospinor components
can be taken as
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where m is the magnetic quantum number. Then eigenvalue equations
for the components can be written as
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Before closing this section, we note that the intertwining relations
(5) and (6) can also be written in terms of polar coordinates and are
given by
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The set of intertwining relations (12) is particularly important since
knowing solution of one of the two Eqs. (10) or (11), the other can be
obtained through the above relations.

3. Conditionally exactly solvable magnetic fields

Here we shall consider several conditionally exactly solvable
magnetic field profiles i.e, magnetic fields for which all or some bound
state solutions can be found only when the parameters of the model
assume some specific values. To this end we choose the function f(r) to

be of the form
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Then the resulting magnetic field is given by
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From Eq. (14) it can be observed that the magnetic field is
everywhere finite with a maximum value of λ− and a minimum of

λ g− − 4 ∑i
N

i=0 . We shall now consider different values of N and examine
if the corresponding magnetic field can support bound states when the
parameters assume some particular values.

3.1. N = 1

In this case the magnetic field becomes
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and the profile of this field can be seen in Fig. 1.
Then, from (10) and (11) the equations for the components ϕ1 and

ϕ2 can be obtained as
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where Z mg λ= 2 +1 .
Conditional exact solutions: Let us now consider Eq. (17) for the

lower component. This equation can be interpreted as the radial
Schrödinger equation for a particle moving in a two dimensional
nonpolynomial oscillator potential. Next, we choose the parameter g1
in such a way that the nonpolynomial part vanishes i.e,1

Z g λ m= 0 ⇒ = − /2 .1 (18)

Now recalling that g1 and λ are always positive, the admissible values of
m are m < 0. With g1 as given above, Eq. (17) becomes the radial
Schrödinger equation for the two-dimension isotropic harmonic oscil-
lator:
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It may be pointed out the effective potential becomes that of the radial
harmonic oscillator only when g1 assumes the particular value given by
(18). The eigenvalues and the corresponding wave functions of (19) are
standard and are given by:

E v λ n M n M= ± 2 ( + + 1) , = 0, 1, 2,…, = 1, 2, ⋯n M F, (20)

ϕ r r e λr( ) ∼ ( /2),M λr
n
M
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where x( )n
M is the associated Laguerre polynomial. Then, the lower

component of the pseudospinor wave function ψ2 is

Fig. 1. Magnetic field profile for N λ= 1, = 1. 1 Note that if λ < 0, solutions can be obtained in a similar way for the sector m > 0.
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