Physica E 91 (2017) 136—-140

journal homepage: www.elsevier.com/locate/physe it

Contents lists available at ScienceDirect

Physica E

@ owamoson st
P v nwesiaacs

Condensate oscillations in a Penrose tiling lattice

Z. Akdeniz™", P. Vignolo""*

2 Faculty of Science and Letters, Piri Reis University, 34940 Tuzla, Istanbul, Turkey

@ CrossMark

b Université Céte d'Azur, CNRS, Institut de Physique de Nice, 1361 route des Lucioles, 06560 Valbonne, France

ARTICLE INFO ABSTRACT

Keywords:

Dynamic properties of condensates
Quantum transport

Quasicrystals

We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a
lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by
Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We
observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible),

on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates
at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling
oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping

dynamics.

1. Introduction

Quasicrystals have been fascinating the scientific community since
their discovery [1]. At halfway between periodic crystals and disor-
dered lattices, quasicrystals present some amazing physical properties,
as their fingerprint, the Bragg spectrum, that is point-like as in periodic
crystals but with symmetries that are forbidden by periodicity.

The geometrical structure of quasicrystals obviously has an impact
too on their electronic spectrum [2—5], whose gaps are closely related
to the Bragg spectrum [6]. The spectral properties of quasicrystals are
well known in one dimension (1D) [7,8]. In 1D, the spectrum for a
Schrodinger operator subjected to a quasi-periodic potential or living
on a quasicrystal is a Cantor set [9,10], but the nature of the states can
be very different. In Aubry-André lattices, the eigenstates can be
extended, exponentially localized or critical, depending on the strength
of the quasiperiodic potential [9]. On the other side, for quasicrystals
obtained with recurrence rules as for the a Fibonacci tiling, no state can
be exponentially localized [11]. Clearly the spectrum and the nature of
the eigenstates influence the system transport properties, and if the
Aubry-André lattice can behave as an insulator [12], Fibonacci tilings
can show high transmission coefficients for self-similar wave-functions
[13,14].

In higher dimensions, the state of play of the theoretical picture is
less advanced, even if, for the case of Penrose quasicrystals, some exact
results are known. We mention here the possibility, by varying the
Hamiltonian parameterization, to have localized states at finite support
at the center of the spectrum [15], or a critical ground state at
vanishing energy [16]. Geometrical frustrated states could be observed
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too [17].

In this paper we study the dynamics of a (non)interacting Bose-
Einstein condensate (BEC) in the presence of a special model of a
Penrose lattice where critical properties can be driven by varying the
Hamiltonian parameters [16]. Hereafter we will name this potential the
Sutherland-Penrose lattice (SPL). The physics of BECs confined in two
dimensional quasiperiodic lattices with a five-fold symmetry was
already studied in [18]. In such a system, that it can be created via
the interference of five laser beams [19] it is possible to observe the
transition from ballistic expansion to localized regimes, in the absence
and in the presence of the interactions, as a function of the strength of
the quasi-periodic potential. In the presence of the SPL, we observe a
reacher dynamics. The expansion of a wavepacket is accompanied by
size oscillations whose frequency depend on the interaction strength.
We observe high-frequency reshaping oscillations and low-frequency
rescaling oscillations. Depending on the initial conditions, not-surpris-
ingly, interactions can induce the self-trapping of the BEC.

The paper is organized as following. In Section 2 we remind the
Sutherland construction to define the SPL site energies. At variance
with [16], we consider both the two possible symmetry centers. In
Section 3 we show that the expansion of a BEC condensate initially at
rest and localized at the lattice center strongly depends, not only on the
symmetry center choice, but also on the potential energy dispersion
and on the interaction strength. Some concluding remarks are given in
Section 4.
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Fig. 1. Rhombus Penrose tiling.
2. The Sutherland-Penrose-lattice model

We consider the Penrose lattice introduced previously
by Sutherland [16]. The starting point of such a model is a Penrose
rhombus tiling (see Fig. 1): the vertices correspond to the lattice sites
and the rhombuses edges correspond to the possibility for a particle to
hop among the sites. All the hopping terms t are equal, while the site
energies ¢; depend on the type of vertex.

One can identify 8 types of vertex that can be picked out by looking
at the tiles surrounding these vertices (see for instance [20]). The
corresponding site energies ¢; are chosen in order to ensure that the
ground state of the single-particle tight-binding Hamiltonian

N
H== Y (i)l + )il + Y eli)il,

Cij) i=1
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is a critical state [16]. In Eq. (1), (ij) denotes the sum over first
neighbour sites.

We remind here below, the main points of procedure proposed
by Sutherland [16]. The tiling is realized by fat and thin rhombuses,
whose edges are labelled by either single or double arrows, as shown in
Fig. 2(a).

The arrows of adjacent edges have to match to give rise to the
Penrose tiling. The single arrows and the double arrows are considered
as two vector fields, A and B whose circulation is zero. The divergence
of such fields fixes the site energies ¢; at each site i as following

glt= Y exp[—(r V-A +s V-B)],
G) (2)

where r and s are two real parameters, and the sum runs over all the j
sites, next-neighbours of the i site. More simply Eq. (2) can be written
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ingoing single and double arrows at site i.

By construction, if s is different from 0, the ground-state is a critical
state (it decays algebraically) if the five-fold symmetry center of the
lattice corresponds to 5 outgoing single arrows (see Fig. 2(b)) [16].
Indeed it is possible to demonstrate that, starting from the symmetry
center of the lattice, and following any path leading away from the
center, the difference between ingoing and outgoing double arrows
grows logarithmically as a function of the distance from the center [16].
The consequence is that the amplitude of the ground state, at E=0,
decreases as a function of the distance from the center as a power law.
More in details, if s<s. with s. = 4In(1), 1 = (/5 + 1)/2 being the
golden number, the square of the wave function is not integrable, while
it becomes integrable for s>s..

In the following we will fix r=s, and the site energies will depend
only on the total number of outgoing arrows N ., and ingoing arrows
Ni.in, Damely

&lt = Niowe™ + Nine'. (O]

3. Dynamics

In this paper we investigate the interplay between the Sutherland
Penrose potential and the interactions in the expansion dynamics of a
Bose-Einstein condensate. We consider not only the case analyzed by
Sutherland with the five-fold symmetry center composed by 5 outgoing
simple arrows (SPL 1) (Fig. 2(b)), but also the other possible case with
5 ingoing double arrows (SPL | ) (Fig. 2(c)). Remark that these two
configurations correspond to a potential local minimum and a potential
local maximum respectively. The equation of motion for the condensate
wavefunction yp; can be written as a Discretized Non-Linear Shrodinger
Equation

iidy;, = —t Z v+ &y + gNy; Py,

) (5)
where g is the interaction strength, N the number of atoms in the
condensate, and the wavefunction is normalized to 1,  ly;> = 1. We
solve Eq. (5) using a second-order Runge-Kutta method. We consider a
lattice of 416 sites, that is built by inflating a basic rhombus tile, and
then copying it 5 times after having rotated it out of 2z/5, 4z/5, 6z/5 and
8z/5 radiants. The lattice radius is 20d, d being the rhombuses side
length.

3.1. Dynamics in the absence of the interactions
First we study the time evolution of a Gaussian wavepacket in the

absence of the interactions and as a function of s. In Figs. 3 and 4 we
plot the width time-evolution of the wavepacket, that we define as
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Fig. 2. Rhombus tiles (a) and Penrose tiling construction via arrows matching. Two types of centers are possibles: (b) with 5 outgoing simple arrows, (c) with 5 ingoing double arrows.
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