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Schrodinger equation for an electron confined to a two-dimensional strip is considered in the presence of
homogeneous orthogonal magnetic field. Since the system has edges, the eigenvalue problem is supplied by the
boundary conditions (BC) aimed in preventing the leakage of matter away across the edges. In the case of
spinless electrons the Dirichlet and Neumann BC are considered. The Dirichlet BC result in the existence of

charge carrying edge states. For the Neumann BC each separate edge comprises two counterflow sub-currents
which precisely cancel out each other provided the system is populated by electrons up to certain Fermi level.
Cancelation of electric current is a good starting point for developing the spin-effects. In this scope we
reconsider the problem for a spinning electron with Rashba coupling. The Neumann BC are replaced by Robin
BC. Again, the two counterflow electric sub-currents cancel out each other for a separate edge, while the spin
current survives thus modeling what is known as pure spin current — spin flow without charge flow.

1. Introduction

The standard notion of electric current implies the directional flow
of electrons with no preferred spin orientation. This results into the
charge current with vanishing net spin flow. If electron spins are
correlated for certain reasons, then alongside with the electric current
one observes what is known as the spin current [1-3]. Considerable
amount of studies [4-14] are devoted to the issue of the pure spin
current — the flow of electron spin without flow of electric charge.

Schrédinger equation for an electron confined to a two-dimensional
strip is considered in the presence of homogeneous orthogonal
magnetic field. It is shown that in the case of spinning electrons with
Rashba spin-orbit interaction, the Robin boundary conditions (BC)
imposed on the wave function along the edges produce pure spin
currents. For the sake of clarity we start with spinless electrons in
Section 2 and point out the difference between the dispersion relations
produced by the Dirichlet and Neumann BC. In Section 3 we discuss
the electric currents carried by edge states and show that for Neumann
BC each of the two edges accommodates two counterflow electric
currents which precisely cancel out each other, i.e. the electric
conductance of a separate edge is zero. In Section 4 we reconsider
the problem for spinning electrons with Rashba spin-orbit interaction.
In that case the Neumann BC are replaced by the Robin BC, leading to
the same conclusion regarding the precise cancellation of electric
currents at each edge separately. In contrast, the spin current is found
to be finite, meaning the occurrence of pure spin current.
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2. Spinless electron in homogeneous orthogonal magnetic
field

Quantum mechanical Hamiltonian is given by

H= ﬁ(iﬁan + eA,)?, )
where A, is the vector potential with B = 9,4, — d,A,.

We study the system with the geometry of infinite length
—00 <y<+ oo and finite width x <x <xz with x = —%d and
Xp =+ %d. Correspondingly, solving the eigenvalue problem, the wave
function y (x, y) has to be exposed to some boundary conditions (BC)
preventing the leakage of a matter across the edges.

The matter flow is described by matter currents

1 . . .
In=— ['l/]L (20, — ieAyy) — (710, — ieA,y) w].
2im (2)

Then the BC imposed on w(x, y) must guarantee vanishing of x-
component of the current (2) at boundaries
TG, y) = T, y) = 0. (3)

These conditions can be realized in a different ways, and here we
comment on the following two options. One is the Dirichlet BC

w(x, y) = wig, y) =0, C)]

and the other one is the Neumann BC
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(5)

Both of these options reproduce (3), but lead to significantly
distinct dispersion relations, hence to distinct physical outcomes. In
order to make this statement clear we pass to solving the eigenvalue
problem.

Usage of the Landau gauge A = (0, Bx) secures translational
invariance of the Hamiltonian in y-direction. Then the wave function
can be written as

w(x,y) = et (&), ©)

where k is the momentum, and ¢ =¢"'x + kZ with # being the
magnetic length set by (eB < 0 is assumed)

oy (xz, y) = Oy (xg, y) = 0.

1 eB

Z 7

By use of (6) the aforementioned boundary conditions are refor-
mulated in terms of ¢, (¢) and appear as

Dirichlet BC: ¢, (&) = ¢ (ég) = 0, (8a)
Neumann BC: ¢'; (1) = ¢k (&r) = 0, (8b)
where
_ 1
& = —Ef d + k¢, 92)
—_ 1 -
Er = +5f d + k¢ (9b)

The eigenvalue problem for H is reduced to the equation
Hiy (&) = e(k) ¢, () where
1

1
Hy=—— 07 + = &%
k=0t ge (10
Parameterizing eigenvalues as e = v + % the general solution ap-

pears as

_ Lo Ll o) a3 e
P (&) =e€2 [QM( 2v,2,§)+c2§M(2 21/,2,5)], an

where M (a, b, z) is the Kummer function, and the constants ¢; , to be
determined by boundary and normalization conditions.
Consider first the Dirichlet BC (8a). Using (11) these appear as

11 113

-1 L g) s aam(l- L 2 g)=o

a (21/ > fL) 281 (2 ) fL) (122)
11, 113,

M| ==, =, |+ creaM| = — ~0. 2. 2| = 0.

“ (2” 2 ‘fR) c2ér (2 22 éR) (12b)

This system has nontrivial solution for ¢, , only if the corresponding
determinant vanishes. Employing the Kummer transformation
M(a, b, z) = ¢M (b — a, a, —z) this condition can be expressed as’

fD (53] =fD (&r)s (13)
where
PPl e
i (€) = .
EM (1 + v 5. =) (14)

Eq. (12) determines v as a function of k, i.e. the dispersion
etk) =v(k) + % Solving (13) numerically one obtains the dispersion
law shown in the left panel of Fig. 1. It should be noted that the
dispersion curves produced by Dirichlet BC have been discussed in
[15].

Consider now the Neumann BC, which by use of (11) is brought to

1 Reasoning for Kummer transformation: increasing &, the value of M(a, b, £2)
becomes exponentially large, while M (a, b, —£2) does not, hence more appropriate for
numeric calculations.
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the form

fv @) = fy G, (15)

where

e = !:M<2‘+;”, 3; -8 + fug’MU;”, 3,:52)5 '
(1-AMCEE 3 -+ 30 - M 3-8 (16)

The corresponding curve takes the shape shown in the right panel of
Fig. 1.

Dirichlet and Neumann BC produce similar flat segments in the
energy curves. This feature reflects the flat structure of the standard
Landau levels where ¢’ (k) = 0. Distinction between the two BC arises
around the segments with nontrivial dispersion: Neumann BC cause
the occurrence of dips which are absent for Dirichlet BC. This
observation is the main object of our interest.

Some remarks are in order before discussing the issue of afore-
mentioned dips. Increasing the width d, the flat segments also become
wider, while the dips acquire certain stable shape. For the sake of
clarity we comment on the case of Neumann BC and consider the right
dip (k > 0).

Introduce the quantity x = k£ — %d/f which measures the deviation

of k from the value of %d/fz. Then the condition (15) appears as
Sy @) =fy &+ dl?).

Provided we discuss the vicinity of k = %d/f2 with d/¢ being large, the
value of « is finite. Then the right hand side of (17) can be replaced by
the corresponding limit, and we come to

17)

rd -1y
fy k) = ——2—2—
21 (=31) (18)

This relation generates infinite solutions for v (k) corresponding to the
dips at k > 0. Hereafter we discuss only the right dips since the
identical analysis is valid for the left ones, as well.

Remark, that the wave functions with momenta from plateaux take
nonvanishing values at x; < x < xz, i.e. are bulk states, while those
from the dips (k ~ i%f”d), are localized at boundaries thus repre-

senting the edge states. In particular, the states with & ~ +%f’zd are
localized at the left edge x ~ —%d, and those with & ~ —%f‘zd at the

right edge x ~ +%d (certain explicit expressions are collected in
Appendix).

3. Matter current

Translational invariance forces the wave functions to take the form
(6), and the eigenvalue problem becomes one-dimensional on the
segment & < & < &. Correspondingly, the scalar product of two wave
functions is defined as

oy = [* ¢ @0
T, TR (19)

Elementary calculations indicate that within the class of wave
functions set either by Dirichlet or Neumann BC we have
(plHep) = (Hplp) signifying that H is hermitian. Provided ¢, (&) is
the normalized eigenfunction we have e(k) = (¢, |H¢,) where from we
obtain

dk

d Rod & dp) & d
€ = /5 ¢k-d—f¢kd§+ /{ " e L ‘R i P,

L dk dk (20)

Due to (pIHe) = (Hdlp) the last two terms cancel out each other
and we find

de _,

53 N
dk /§L E P () (©)dS.

(21)
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