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A B S T R A C T

Using irreducible Green’s functions (IGF) method we analyse the Coulomb interaction dependence of the
spectral functions and the transport properties of a quantum dot coupled to isotropic superconductor and
metallic leads (SC-QD-N). The irreducible Green’s functions method is the modification of classical equation of
motion technique. The IGF scheme is based on differentiation of double-time Green’s functions, both over the
primary and secondary times. The IGF method allows to obtain the spectral functions for equilibrium and non-
equilibrium impurity Anderson model used for SC-QD-N system. By the numerical computations, we show the
change of spectral and the anomalous densities under the influence of the Coulomb interactions. The observed
sign change of the anomalous spectral density can be used as the criterion of the SC singlet-Kondo singlet
transition.

1. Introduction

The Kondo effect in nanoscopic structures (quantum dots based on
semiconductors, carbon nanotubes, nanowires) is actually widely
studied both theoretically and experimentally. One of the interesting
systems is a quantum dot coupled to one superconducting electrode
and one metallic electrode (SC-QD-N). This system is intensively
studied experimentally [1–5], and theoretically [6–15]. The connection
of the superconducting electrode to a quantum dot through proximity
effect induces electron pairing in quantum dot and it causes that the
ground state of a quantum dot is the superconducting singlet state. The
characteristic feature of the QD-SC connection is the appearance of
subgap excitations in the quantum dot spectrum, so-called Andreev or
Yu-Shiba-Rusinov bound states. These states play a crucial role in the
transport properties of mesoscopic superconducting devices, especially
in the subgap regime ( ε Δ< ).

The strong Coulomb repulsion, between opposite spin electrons,
opposes double occupancy of the quantum dot and prefers the doublet
ground state. In SC-QD-N heterojunction the Kondo-type correlations
have to compete with the proximity induced electron pairing. As a
result of this competition, the system exhibits a quantum phase
transition between the doublet and the singlet states [8,9,11,16]. The
transition between the doublet and the singlet states is determined by
different energy scales: the Coulomb interaction (U ), the superconduct-
ing gap (Δ) and the coupling to the superconducting lead (ΓS). In the
large superconducting gap limit and strong coupling ΓS, the singlet

state is superconducting-like. For a weak coupling ΓS and strong values
of U , the dominant state is the Kondo singlet state [9]. The transition
between these two states can be determined experimentally by means
of transport spectroscopy. The measurements of the subgap differential
conductance give the evidence for the Andreev bound states. Zero bias
anomalies mark the quantum phase transition between the doublet and
singlet state.

The properties of SC-QD-N systems have been studied using
various theoretical approaches: Hartree-Fock theory (HF) [3,17],
numerical renormalization group (NRG) [11,13,18], iterative perturba-
tion technique (IPT) [8,9], equation of motion (EOM) [19,20] and
noncrossing approximation (NCA) [21]. All of these methods have
some restrictions. To describe the systems where Coulomb correlations
are not very important one can use the Hartree-Fock theory; e.g. Lee
and co-workers [3] used this approximation to describe the influence of
external magnetic field on the value of the differential conductance
dI dV/ . The Coulomb correlations can be described by the use of the
NRG, IPT and EOM approaches. The NRG method can be used only for
equilibrium state, but IPT and EOM approaches can be used to study
the local Coulomb interaction effect on the non-equilibrium transport
properties.

In this work we use the irreducible Green’s functions (IGF)
technique [22] to describe the properties of SC-QD-N system. This
technique involves the use of modified equation of motion scheme for
the double-time temperature Green’s functions. This scheme permits
us to construct the relevant dynamic solutions in a self-consistent way,
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without decoupling the chain of equations of motion. This technique
was used in many issues of solid-state physics, e.g. itinerant anti-
ferromagnetism [23], itinerant [24] and Heisenberg [25] ferromagnet-
ism, superconductivity in disordered transition metal alloys [26]. We
also used this technique to describe the quantum dot coupled to two
metallic leads (N-QD-N) [27]. The obtained results show that IGF-
EOM method gives the results for density of states and the differential
conductance comparable to the numerical methods results (NRG) both
for the particle-hole symmetric case and also for the asymmetric cases.
In this work, to describe a quantum dot coupled to one superconduct-
ing electrode and one metallic electrode (SC-QD-N) we will use the
IGF-EOM method. In Section 2 we analyse the single impurity
Anderson model using the IGF-EOM approach. In this approach, we
can describe the SC-QD-N system. We also compute the expressions for
the self-energy and the Green’s function in the presence of the Coulomb
repulsion. In Section 3 we present numerical results for the spectral
density and the Andreev transmittance. We analyse the influence of the
Coulomb interaction U on the spectral density and the Andreev
transmittance. Additionally we study the influence of parameter ΓN ,
which characterizes the coupling between the quantum dot and the
normal lead, on the spectral density. The results of non-equilibrium
transport are also shown in Section 3. Final conclusions are given in
Section 4.

2. The model

Using the Anderson-type Hamiltonian we analyse the system which
is built out of the quantum dot connected to one metallic lead and one
superconducting lead. The Hamiltonian of this model has the following
form
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where d d( )σ σ
+ are creation (annihilation) operators for the dot electron

with spin σ , c c( )ασ ασk k
+ , α N S= , are creation (annihilation) operators for

the electron in the normal (N) and superconducting (S) lead, ε αk is the
energy dispersion of α lead, μα is the chemical potential of α lead, εd is
the dot energy,U is the on-site Coulomb interaction between electrons
on the dot, and V αk is the coupling between the α lead and the dot.

We are looking for expressions for the matrix Green’s function in
the Nambu space defined as
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In our analysis, we will use the Green’s function method and the
equation of motion (EOM) technique. In general, the EOM for Green’s
functions is obtained by differentiation with respect to primary time (t).
After taking the Fourier transform, we obtain the following equation
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Applying Eq. (3) to the Hamiltonian (1) we obtain the relation (see
Appendix A)
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with self-energies Σ̂d
0
given by Eq. (A.8). These self-energies come from

the coupling between dot and the normal or superconducting lead. The

two-particle, higher order Green’s functions Γ̂d
(1)

are given by
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For the Γ̂d
(1)

we will apply the technique of irreducible Green’s
functions [22,26]. These functions are defined as
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where the z constant is given by z A H B A B= 〈[[ , ] ; ] 〉/〈[ ; ] 〉− ± ± and it
represents the self-energy in the Hartree-Fock-Bogoliubov approxima-
tion. Using the irreducible Green’s function technique we can express
Eq. (6) as the sum of irreducible function and the mean-field solution.
As a result the last part of Eq. (4) can be written as
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where the interaction part of self-energy, Σ̂U
HF

, is given by
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Inserting Eqs. (8), (A.5) and (A.8) into Eq. (4) we obtain the
following relations
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where g g Σˆ = ˆ − ˆ
d
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HF−1 −1 . Neglecting the irreducible function Γ̂d
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Eq. (10) we obtain the well-known Hartree-Fock-Bogoliubov approx-
imation which is widely applied to the systems with quantum dot, for
which the Coulomb correlations are less important (e.g. for metallic
dots, see [15,28]). Because we are interested in the influence of the
Coulomb correlations on the transport properties, we have to calculate

the irreducible function Γ̂d
ir (1)

.
In the previous papers where the classic EOM approach in the

SIAM model was used (e.g. [29–31]), the higher order Green’s

functions Γ̂d
(1)

was calculated by reusing of Eq. (3). Such approach
allows to obtain Abrikosov-Suhl resonance outside the particle-hole
symmetric system. For n = 1d the Abrikosov-Suhl peak disappears. The
classic EOM approach does not fulfil the unitary limit for conductance
in the particle–hole symmetry case. Out of the particle–hole symmetric
case one obtain a narrow Abrikosov-Suhl resonance peak, whose height
and width are small, resulting in an underestimation of Kondo
temperature.

In order to correct this defect of the classic EOM approach, by

calculating the Γ̂d
ir (1)

function we will use the extended equation of
motion approach based on differentiating Green’s function over the
second time variable (t′). In the energy representation this leads to the
equation [22]
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Using this equation we obtain the following relation for the
irreducible Green’s function
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