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A B S T R A C T

We calculate the Stark effect and the polarisability of shallow-donor impurity located in the centre of lens
shaped quantum dot by a variational method and in the effective-mass approximation. Our theoretical model
assumes an infinite confinement to describe the barriers at the dot boundaries and the electric field is
considered to be applied in the z-direction. The systematic theoretical investigation contains results with the
quantum dot size and the strength of the external field. Our calculations reveal that the interval wherein the
polarisability varies depends strongly on the dot size.

1. Introduction

Recent advances in the fabrication techniques of nano-meter sized
structure of crystals have been arousing considerable interest.
Especially low-dimensional semiconductor structures have been exten-
sively investigated both theoretically and experimentally. During the
growth process it is possible, intentionally or unintentionally, to add
impurities into the nano dot [1]. So an understanding of the nature of
impurity states in semiconductor structures is one of the crucial
problems in semiconductor physics because impurities can dramati-
cally alter the properties and performance of the quantum devices [2].
The incorporation of impurities into a quantum dot (QD) affects
considerably the optical and transport properties and can explain the
new photo-luminescent transition in optoelectronic devices [3]. From
theoretical side, this poses a class of eigenvalue problems in a
coulombic potential with specific boundary conditions. In some cases
the problem is solved and the simplest model is the case of an impurity
located in the centre of spherical QD. However the spherical cavity is
still not good enough for a real QD [4]. In many cases pyramids,
truncated pyramids or lenses provide better spatial descriptions of the
QD geometries than spheres, ellipsoids or even parallelepipeds [5]. In a
self-organised growth process one often finds lens-shaped QDs with
cylindrical symmetry around the growth direction [6]. Indeed the
Schrödinger equation itself is unchanged but the boundary conditions
imposed by the geometry have an important impact on the theoretical
solutions. That is, in the QD systems the additional quantum confine-
ment dramatically changes the optical and electronic properties,
compared to those in bulk structures [7,8]. An external control of the
QD properties can be achieved quite straightforward. This includes the
manipulation of the QD eigenstates in a well-defined manner by

applying external electric or magnetic fields [9]. The existence of the
external quantising fields often results in restructure of the energy
levels, as well as creation of new selection rules in the process of the
light absorption [10].

The phenomenon of the change in the optical properties of
semiconductor nanostructures in response to an electric field manifests
itself in spectral shifts and changes in the intensities of the absorption
maxima [11]. Moreover semiconductor optoelectronic modulators
based on the quantum-confined Stark effect (QCSE) are attractive
transmitters to convert signals from the electronic into the optical
domain and vice versa [12]. So understanding the QCSE is important
from both fundamental physics and device applications perspectives.
That is why lot of works have been devoted to the study of the Stark
effect in semiconductor nanostructures [11,13–15]. In this context
Chen-Kai Kao et al. [16] studied the performance of UV electro
absorption modulators based on bulk GaN films and GaN/AlGaN
multiple quantum wells and they found that the absorption can be
strongly modified through the application of an external electric field.
Achtstein et al. [11] also performed a study on electro absorption in
CdSe colloidal QDs, nanorods, and nanoplatelets exposed to an electric
field. They concluded that the experimental findings require an
elaborate theory of electro absorption which should take into account
different responses of the electronic systems, of the structures, to the
external electric field. From the side of the theoretical studies, they
usually focuses on the study of one particle (electron or hole) or an
exciton. Wang et al. studied the transverse Stark effect of electrons in
semiconducting quantum boxes and they concluded that the large Stark
shift leads to an obvious reduction of the inter band recombination and
wide irradiance spectrum [8].

Terzis and Baskoutas [17] investigated the effect of electric and
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magnetic field on the binding energy of a donor states in GaAS QD,
they found that the binding energy decreases as the electric field
increases. Morales et al. [18] included the effect of the hydrostatic
pressure in their study; their conclusion was that the impurity binding
energy and polarisability can be tuned by means of an applied external
electric field or hydrostatic pressure. They added that this behaviour
could be used in the design and construction of semiconductor devices.

Elsewhere, the polarisability determines the sensitivity of the
exciton energy to an electric field. Moreover, for applications of QDs
as emitters and detectors, the polarisability should be large so that the
energy can be tuned over a large range with modest electric fields [19].
An example of a lens-shaped geometry may be found for InAs QDs
grown on InP [20] and they can be well described by the geometry
imposed by the parabolic coordinates [5]. To our knowledge there is no
study concerning the effect of an electric field on an impurity located in
the centre of such a geometry.

The aim of this work is to present a variational calculation of the
shift of the energies for a hydrogenic impurity located in the centre of a
symmetrical paraboloidal quantum dot (SPQD) and submitted to an
external electric field using an infinite hard-wall confining potential.
This particular potential avoids the existence of quasi bound states for
strong fields, since a strong enough electric field combined with finite
confining potential will tend to eject the carrier (the electron) from the
bound state. The dependence of the polarisability on the applied
electric field and the size of the SPQD is also studied and discussed.

2. Theoretical framework

We consider an impurity donor confined in the centre of a SPQD
(see Fig. 1). The electric field is applied along the z-axis.

In order to describe the interplay between the spatial confinement
of the electron which is due to the geometry of the QD, the external
electric field, and the attractive Coulomb interaction between the
electron and the donor, which is in the centre of the geometry, we
use the following Hamiltonian in effective mass approximation and
neglecting the band-structure effects:
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where m*e and e are the electron effective mass and its charge
respectively, κ is the static dielectric constant, F is the electric field
which is applied in the z-direction, and r is the distance of the electron
from the impurity site (see Fig. 1). Vw is the confining potential which
vanishes inside the dot and becomes infinite outside. The assumption
of a constant electric field is justified by a negligible difference between
the dielectric constants of the dot and its surroundings.

Using the effective Rydberg constant R m a= /2 * *y e
2 2 as the unit of

the energy, the effective Bohr radius a κ m e* = / *e2 2 as the unit of the
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2 as unit of the electric field intensity the
Schrödinger equation reads:
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Here f = F
F0

is the dimensionless measure of the electric field. We recall

that F0 is twice the donor ionisation defined by Blossey [21].
Owing to the geometry of the lens shape considered in this work, it

is more suitable to use the parabolic coordinates system ξ η φ( , , )
related to the Cartesian coordinates by [22]:
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with ξ0 ≤ < ∞, η0 ≤ < ∞, and φ π0 ≤ ≤ 2 . This coordinate system
has been used in the literature for example by to study the hydrogen
atom [23–25], and to study the paraboloidal QD [4,26,5,27]. In this
coordinate system the Hamiltonian takes the following form:
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The impurity energy in the presence of electric field is calculated by the
traditional variational method which consist of choosing a trial ground
state wave function, calculating the corresponding energy and mini-
mising it. In the absence of the electric field (f=0) the variables in the
Hamiltonian in Eq. (4) are separable. When the electric field is
considered ( f ≠ 0), the Hamiltonian separates partially [28] and under
such conditions several alternative methods (for instance, diagonalisa-
tion with appropriate basis, finite elements method, finite differences
methods, and variational method) can be used to find the eigenvalues
and eigenfunctions of the differential equation. Assaid et al. [26] have
studied a donor impurity located at the centre of a SPQD. For the
bound state the solution is given by
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where Ω =
E

−1
2 (note that for the bound state E is negative [26]), N is

the normalisation constant, and M denotes the Kummer's confluent
hypergeometric function. β and γ are two arbitrary separation con-
stants except for the constraint β γ+ = 1. The ground state wave
function correspond to β γ= = 1/2. The application of an external
electric field leads to a distortion of the symmetry and polarises the
orbitals in the electric field direction. Here we follow the work by
Duque et al. [29] and we choose as a variational function the product
between the impurity-related wave function in Eq. (5) and a z-
dependent exponential function which takes into account the electric
field effects. In this work, the maximum value of the applied electric
field will be 300 kV/cm and consequently only the first two terms of the
Taylor's series of the exponential function will be necessary to describe
the electric field effects. Such approximate trial wave function has been
previously used in the literature for donor impurities and excitons in
QD under static applied electric field [30–32]. So in this conditions the
hydrogenic problem for the Hamiltonian in Eq. (4) may be solved by
choosing the impurity ground state trial wave function as

Ψ ξ η φ Ψ ξ η φ αf ξ η( , , ) = ( , , )(1 + ( − )),0 (6)

where α is a variational parameter. The resulting equation to solve
reads

Fig. 1. The symmetrical paraboloidal quantum dot (SPQD) geometry is characterised by
the thickness at the centre h, the circumference diameter D, and the volume V hD= π
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