Contents lists available at ScienceDirect

# Physica E

journal homepage: www.elsevier.com/locate/physe

# Existence of Majorana bound states near impurities in the case of a small superconducting gap

## Yu.P. Chuburin

Physical-Technical Institute, Ural Branch of Russian Academy of Sciences, Izhevsk, Russia

### ARTICLE INFO

Keywords: Topological insulator Zeeman field Majorana bound states Impurity Superconducting gap Transmission probability

# ABSTRACT

We consider the edge states of a 2D topological insulator in the presence of the Zeeman field and in proximity to a *s*-wave superconductor. We analytically show that two linearly independent Majorana bound states (MBSs) can appear near the impurity located in a small region in which both the pairing parameter  $\Delta$  and the Zeeman field *M* may be changed. We find two conditions for the existence of the MBSs: firstly,  $|\Delta| \approx |M|$ , ie, the superconducting gap in the spectrum should be sufficiently small; secondly, the absolute value of the average *w* of the impurity potential should have a certain value; the last condition is necessary. The equation  $|\Delta| = |M|$  determines the boundary of the topological phase of the system, thus the system as a whole must be close to this boundary in relation to the parameters. If the same is true for the impurity region, then the second condition has the form  $w \approx \pm v/2$  where *v* is the edge states velocity. In this case, the electron transmission probability is equal to 1 for energies close to zero.

#### 1. Introduction

In condensed matter, the Majorana bound states (MBSs) can be thought of as the zero-energy many-electron excitations; they are quasiparticles with no distinction between particles and antiparticles [1,2]. The MBSs may arise near domain walls between different topological phases in the so-called topological superconductors, in particular, at the ends of the quantum wire, proximity coupled to a superconductor [1-7]. This states are topologically protected, hence they are robust against extrinsic perturbations [2,5-7]. The MBSs may have good prospects of applications in quantum computing [1,5,6]. In theory, their existence is not in doubt, but their experimental observation is still being questioned [1,6].

In this paper we deal with the edge states of a 2D topological insulator in the presence of the Zeeman field and in proximity to a swave superconductor [1,2,5–7]. We will explore the possibility of the existence of MBSs near the impurity located in a small region in which both the pairing parameter  $\Delta$  and the Zeeman field *M* may change. (See in [8,9] the general discussion on the existence of impurity-induced bound states near zero energy in 1D structures, proximity coupled to a superconductor). Using the Green function of the mean field Bogoliubov-de Gennes Hamiltonian (which we find explicitly), we analytically have proved that two linearly independent MBSs localized at the impurity can arise, but only if  $|\Delta| \approx |M|$ , ie, for a small superconducting gap in the spectrum, and, in addition, the absolute value of the average *w* of the impurity potential must have a certain value (see below; the latter condition is necessary). We also obtain the explicit expressions for the wave functions of the MBSs. The equation  $|\Delta| = |M|$  determines the boundary of the topological phase of our system [4], thus the system as a whole must be close to this boundary in relation to the parameters. If the same is also true for the impurity region, then w should be close to  $\pm v/2$  where v is the edge states velocity. In this case the electron transmission probability is equal to 1 for energies close to zero, but outside the gap (cf. the existence of the zero energy conductance peak [3]). Another possibility is discussed in Section 3. The results may be useful for the experimental observation of the MBSs.

#### 2. Spectrum and green function

In this section, we study the following Bogoliubov-de Gennes Hamiltonian [1,2,4,10]:

$$H = \begin{pmatrix} -iv\sigma_x \partial_x + M\sigma_z & \Delta i\sigma_y \\ -\Delta i\sigma_y & iv\sigma_x \partial_x - M\sigma_z \end{pmatrix}$$

where  $\sigma_x$ ,  $\sigma_y$ , and  $\sigma_z$  are the Pauli matrices acting in the spin space, the pairing amplitude  $\Delta \neq 0$  is assumed to be real, and M = const. Further, we set v=1. The wave functions of the Hamiltonian H have the form

$$\psi = (\psi_1^{\dagger}, \psi_1^{\downarrow}, \psi_2^{\downarrow}, \psi_2^{\downarrow}) = (\psi_1, \psi_1^{\prime}, \psi_2, \psi_2^{\prime})$$

.

Here the components with index 1 and 2 refer to particles and holes,

E-mail address: chuburin@ftiudm.ru.

http://dx.doi.org/10.1016/j.physe.2017.02.017

Received 17 October 2016; Received in revised form 18 January 2017; Accepted 20 February 2017 Available online 21 February 2017

1386-9477/ $\odot$  2017 Elsevier B.V. All rights reserved.





CrossMark

#### respectively.

To investigate the Majorana states and their influence on the scattering pattern, we will use the Green function of the Hamiltonian *H*. We will find this function by solving the equation  $(H - E)\psi = \varphi$  or, in more detail,

$$-i\partial_x \psi'_1 - (E - M)\psi_1 + \Delta \psi'_2 = \varphi_1,$$
(1)

$$\begin{split} -i\partial_{x}\psi_{1} &- (E+M)\psi_{1}' - \Delta\psi_{2} = \varphi_{1}', \\ i\partial_{x}\psi_{2}' &- (E+M)\psi_{2} - \Delta\psi_{1}' = \varphi_{2}, \\ i\partial_{x}\psi_{2} &- (E-M)\psi_{2}' + \Delta\psi_{1} = \varphi_{2}', \end{split}$$

with respect to  $\psi$ . After Fourier transformation

$$\psi(x) \mapsto \widehat{\psi}(p) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-ipx} \psi(x) dx$$

we obtain from (1)

$$\begin{pmatrix} -(E-M) & p & 0 & \Delta \\ p & -(E+M) & -\Delta & 0 \\ 0 & -\Delta & -(E+M) & -p \\ \Delta & 0 & -p & -(E-M) \end{pmatrix} \begin{pmatrix} \widehat{\psi}_1 \\ \widehat{\psi}'_1 \\ \widehat{\psi}_2 \\ \widehat{\psi}'_2 \end{pmatrix} = \begin{pmatrix} \widehat{\varphi}_1 \\ \widehat{\varphi}'_1 \\ \widehat{\varphi}_2 \\ \widehat{\varphi}'_2 \end{pmatrix}.$$
(2)

We denote by d = d(p) the determinant of the system (2). Then

$$d = E^{4} - 2E^{2}(M^{2} + p^{2} + \Delta^{2}) + (M^{2} + p^{2} - \Delta^{2})^{2}$$
  
=  $p^{4} - 2p^{2}(E^{2} - M^{2} + \Delta^{2}) + (E^{2} - M^{2} - \Delta^{2})^{2} - 4M^{2}\Delta^{2}.$  (3)

By (3), the equation d=0 is equivalent to the equations  $E^2 = (\Delta \pm \sqrt{M^2 + p^2})^2$ . Hence the spectrum of *H* is the union of  $(-\infty, -\alpha]$  and  $[\alpha, \infty)$  where  $\alpha = \min\{|M - \Delta|, |M + \Delta|\}$ . Also from (3) we have

$$\frac{1}{d} = \frac{1}{(p^2 - p_1^2)(p^2 - p_2^2)} = \frac{1}{p_1^2 - p_2^2} \left( \frac{1}{p^2 - p_1^2} - \frac{1}{p^2 - p_2^2} \right),$$
(4)

 $p_1^2 - p_2^2 = 4E\Delta$ 

where

$$p_1 = \pm \sqrt{(E+\Delta)^2 - M^2}, p_2 = \pm \sqrt{(E-\Delta)^2 - M^2}.$$
 (5)

First, performing the calculations like [11], we find from (2) and Cramer's rule the Green function of H in the momentum representation and then, using (4) and the known formulas

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{ipx}\widehat{\varphi}(p)dp}{p^2 - a^2} = -\frac{1}{2ia} \int_{-\infty}^{\infty} e^{ia|x-x'|}\varphi(x')dx',$$
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{e^{ipx}p\widehat{\varphi}(p)dp}{p^2 - a^2} = -\frac{1}{2i} \int_{-\infty}^{\infty} e^{ia|x-x'|} \operatorname{sgn}(x - x')\varphi(x')dx',$$

we obtain it in the coordinate representation. As a result, we get the following expressions:

$$\begin{split} \psi_{1}(x) &= ((H-E)^{-1}\varphi)_{1}(x) = -\frac{E+M}{2ip_{1}} \int_{-\infty}^{\infty} e^{ip_{1}|x-x^{\prime}|}\varphi_{1}(x^{\prime})dx^{\prime} \\ &\quad -\frac{1}{2i} \int_{-\infty}^{\infty} e^{ip_{1}|x-x^{\prime}|}\operatorname{sgn}(x-x^{\prime})\varphi^{\prime}_{1}(x^{\prime})dx^{\prime} \\ &\quad +\frac{A}{2ip_{1}} \int_{-\infty}^{\infty} e^{ip_{1}|x-x^{\prime}|}\varphi^{\prime}_{2}(x^{\prime})dx^{\prime} \\ &\quad +\frac{E+M-\Delta}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x^{\prime}|}p_{1}-e^{ip_{2}|x-x^{\prime}|}p_{2})\varphi_{1}(x^{\prime})dx^{\prime} \\ &\quad +\frac{1}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x^{\prime}|}-e^{ip_{2}|x-x^{\prime}|})\operatorname{sgn}(x-x^{\prime})\varphi^{\prime}_{1}(x^{\prime})dx^{\prime} \end{split}$$
(6)

$$\begin{aligned} -\frac{1}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x'|} - e^{ip_{2}|x-x'|}) \operatorname{sgn}(x - x')\varphi_{2}(x')dx' \\ + \frac{E + M - \Delta}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x'|}/p_{1} - e^{ip_{2}|x-x'|}/p_{2})\varphi'_{2}(x')dx', \\ \psi'_{1}(x) &= ((H - E)^{-1}\varphi)'_{1}(x) \\ &= -\frac{E - M}{2ip_{1}} \int_{-\infty}^{\infty} e^{ip_{1}|x-x'|}\varphi'_{1}(x')dx' \\ &- \frac{1}{2i} \int_{-\infty}^{\infty} e^{ip_{1}|x-x'|} \operatorname{sgn}(x - x')\varphi_{1}(x')dx' \\ &- \frac{\Delta}{2ip_{1}} \int_{-\infty}^{\infty} e^{ip_{1}|x-x'|}\varphi_{2}(x')dx' \\ &+ \frac{E - M - \Delta}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x'|}/p_{1}) \\ &- e^{ip_{2}|x-x'|}/p_{2})\varphi'_{1}(x')dx' \\ &+ \frac{1}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x'|} - e^{ip_{2}|x-x'|})\operatorname{sgn}(x - x')\varphi_{1}(x')dx' \\ &+ \frac{1}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x'|} - e^{ip_{2}|x-x'|})\operatorname{sgn}(x - x')\varphi'_{2}(x')dx' \\ &+ \frac{-E + M + \Delta}{4i} \int_{-\infty}^{\infty} (e^{ip_{1}|x-x'|} - e^{ip_{2}|x-x'|})\operatorname{sgn}(x - x')\varphi'_{2}(x')dx' \end{aligned}$$
(7)

another two equations are obtained from (6), (7) by replacing

$$\psi_1 \to -\psi'_2, \, \psi'_1 \to \psi_2, \, \varphi_1 \to -\varphi'_2, \, \varphi'_1 \to \varphi_2, \, \varphi_2 \to \varphi'_1, \, \varphi'_2 \to -\varphi_1.$$

For E not belonging to the spectrum, the signs in (5) are determined by the decrease of the exponential functions. If E belongs to the spectrum, these signs determine the direction of movement of the particles.

#### 3. Results and discussion

#### 3.1. Majorana states

According to [8], the nonmagnetic impurities may lead to subgap bound states in wires only in the presence of a combination of Zeeman splitting and Rashba spin-orbit coupling, which are also required to realize a topological superconducting phase. In our case, the role of the Rashba interaction plays the 1D Dirac Hamiltonian. (Note that it can be directly checked that for  $-d^2/dx^2$  instead of the Dirac Hamiltonian, the MBSs do not arise near the impurity).

Let us write the equation describing the eigenfunctions of the Hamiltonian H + V where V is the potential, corresponding to the energy E,

$$\psi = -(H - E)^{-1}V\psi. \tag{8}$$

We use the short-range potential of the form

$$V = \begin{pmatrix} \lambda M + V_0 & 0 & 0 & -\nu \Delta \\ 0 & -\lambda M + V_0 & \nu \Delta & 0 \\ 0 & \nu \Delta & -\lambda M - V_0 & 0 \\ -\nu \Delta & 0 & 0 & \lambda M - V_0 \end{pmatrix} \delta(x)$$
(9)

where  $\lambda$ ,  $\nu$ , and  $V_0$  are arbitrary real constants, modeling the change of the Zeeman field and the pairing parameter and also the presence of the impurity near x = 0. We note that  $w = 4V_0$  is the average of the impurity potential (for  $\lambda = \nu = 0$ ). In the results obtained below, we can replace  $\delta(x)$  with smooth non-negative even function with a support in a sufficiently small neighborhood of zero, the integral of which is equal to 1. Next, we consider only the even smooth approximation of the Dirac function  $\delta(x)$ , which corresponds to the symmetrical distribution of values of *V* around zero.

To find the MBSs, we set E=0 in (8), and therefore in the expressions for the Green function (see (6), (7) and the remark after (7)). Then, by (5),  $p_1 = p_2 = p = \pm \sqrt{\Delta^2 - M^2}$ . To obtain the decrease of the eigenfunctions at infinity, we have to assume that  $|M| > |\Delta|$  (see [8] where the authors show the necessity of this condition for the existence

Download English Version:

# https://daneshyari.com/en/article/5450181

Download Persian Version:

https://daneshyari.com/article/5450181

Daneshyari.com