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A B S T R A C T

We consider the edge states of a 2D topological insulator in the presence of the Zeeman field and in proximity to
a s-wave superconductor. We analytically show that two linearly independent Majorana bound states (MBSs)
can appear near the impurity located in a small region in which both the pairing parameter Δ and the Zeeman
field M may be changed. We find two conditions for the existence of the MBSs: firstly, Δ M| | ≈ | |, ie, the
superconducting gap in the spectrum should be sufficiently small; secondly, the absolute value of the average w
of the impurity potential should have a certain value; the last condition is necessary. The equation Δ M| | = | |
determines the boundary of the topological phase of the system, thus the system as a whole must be close to this
boundary in relation to the parameters. If the same is true for the impurity region, then the second condition
has the form w v≈ ± /2 where v is the edge states velocity. In this case, the electron transmission probability is
equal to 1 for energies close to zero.

1. Introduction

In condensed matter, the Majorana bound states (MBSs) can be
thought of as the zero-energy many-electron excitations; they are
quasiparticles with no distinction between particles and antiparticles
[1,2]. The MBSs may arise near domain walls between different
topological phases in the so-called topological superconductors, in
particular, at the ends of the quantum wire, proximity coupled to a
superconductor [1–7]. This states are topologically protected, hence
they are robust against extrinsic perturbations [2,5–7]. The MBSs may
have good prospects of applications in quantum computing [1,5,6]. In
theory, their existence is not in doubt, but their experimental observa-
tion is still being questioned [1,6].

In this paper we deal with the edge states of a 2D topological
insulator in the presence of the Zeeman field and in proximity to a s-
wave superconductor [1,2,5–7]. We will explore the possibility of the
existence of MBSs near the impurity located in a small region in which
both the pairing parameter Δ and the Zeeman field Mmay change. (See
in [8,9] the general discussion on the existence of impurity-induced
bound states near zero energy in 1D structures, proximity coupled to a
superconductor). Using the Green function of the mean field
Bogoliubov-de Gennes Hamiltonian (which we find explicitly), we
analytically have proved that two linearly independent MBSs localized
at the impurity can arise, but only if Δ M| | ≈ | |, ie, for a small super-
conducting gap in the spectrum, and, in addition, the absolute value of
the average w of the impurity potential must have a certain value (see

below; the latter condition is necessary). We also obtain the explicit
expressions for the wave functions of the MBSs. The equation Δ M| | = | |
determines the boundary of the topological phase of our system [4],
thus the system as a whole must be close to this boundary in relation to
the parameters. If the same is also true for the impurity region, then w
should be close to v± /2 where v is the edge states velocity. In this case
the electron transmission probability is equal to 1 for energies close to
zero, but outside the gap (cf. the existence of the zero energy
conductance peak [3]). Another possibility is discussed in Section 3.
The results may be useful for the experimental observation of the
MBSs.

2. Spectrum and green function

In this section, we study the following Bogoliubov-de Gennes
Hamiltonian [1,2,4,10]:

H
ivσ Mσ iσ

iσ ivσ Mσ
=

− ∂ + Δ
− Δ ∂ −

x x z y

y x x z

⎛
⎝⎜

⎞
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where σ σ,x y, and σz are the Pauli matrices acting in the spin space, the
pairing amplitude Δ ≠ 0 is assumed to be real, and M = const. Further,
we set v=1. The wave functions of the Hamiltonian H have the form

ψ ψ ψ ψ ψ ψ ψ ψ ψ= ( , , , ) = ( , ′ , , ′ ).1
↑

1
↓
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1 1 2 2

Here the components with index 1 and 2 refer to particles and holes,
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respectively.
To investigate the Majorana states and their influence on the

scattering pattern, we will use the Green function of the Hamiltonian
H. We will find this function by solving the equation H E ψ φ( − ) = or,
in more detail,

i ψ E M ψ ψ φ− ∂ ′ − ( − ) + Δ ′ = ,x 1 1 2 1 (1)

i ψ E M ψ ψ φ

i ψ E M ψ ψ φ

i ψ E M ψ ψ φ

− ∂ − ( + ) ′ − Δ = ′ ,

∂ ′ − ( + ) − Δ ′ = ,

∂ − ( − ) ′ + Δ = ′ ,

x

x

x

1 1 2 1

2 2 1 2

2 2 1 2

with respect to ψ. After Fourier transformation
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e ψ x dx( ) ↦ ( ) = 1
2
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we obtain from (1)
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We denote by d d p= ( ) the determinant of the system (2). Then

d E E M p Δ M p Δ

p p E M Δ E M Δ M Δ

= − 2 ( + + ) + ( + − )

= − 2 ( − + ) + ( − − ) − 4 .

4 2 2 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2 2 2 (3)

By (3), the equation d=0 is equivalent to the equations
E Δ M p= ( ± + )2 2 2 2. Hence the spectrum of H is the union of

α(−∞, − ] and α[ , ∞) where α M Δ M Δ= min{| − |, | + |}. Also from (3)
we have
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(4)

p p EΔ− = 41
2
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where

p E Δ M p E Δ M= ± ( + ) − , = ± ( − ) − .1
2 2

2
2 2 (5)

First, performing the calculations like [11], we find from (2) and
Cramer's rule the Green function of H in the momentum representa-
tion and then, using (4) and the known formulas
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we obtain it in the coordinate representation. As a result, we get the
following expressions:
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another two equations are obtained from (6), (7) by replacing

ψ ψ ψ ψ φ φ φ φ φ φ φ φ→ − ′ , ′ → , → − ′ , ′ → , → ′ , ′ → − .1 2 1 2 1 2 1 2 2 1 2 1

For E not belonging to the spectrum, the signs in (5) are determined
by the decrease of the exponential functions. If E belongs to the
spectrum, these signs determine the direction of movement of the
particles.

3. Results and discussion

3.1. Majorana states

According to [8], the nonmagnetic impurities may lead to subgap
bound states in wires only in the presence of a combination of Zeeman
splitting and Rashba spin-orbit coupling, which are also required to
realize a topological superconducting phase. In our case, the role of the
Rashba interaction plays the 1D Dirac Hamiltonian. (Note that it can
be directly checked that for d dx− /2 2 instead of the Dirac Hamiltonian,
the MBSs do not arise near the impurity).

Let us write the equation describing the eigenfunctions of the
Hamiltonian H V+ where V is the potential, corresponding to the
energy E,

ψ H E Vψ= −( − ) .−1 (8)

We use the short-range potential of the form

V
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where λ ν, , and V0 are arbitrary real constants, modeling the change of
the Zeeman field and the pairing parameter and also the presence of
the impurity near x=0. We note that w V= 4 0 is the average of the
impurity potential (for λ ν= = 0). In the results obtained below, we
can replace δ x( ) with smooth non-negative even function with a
support in a sufficiently small neighborhood of zero, the integral of
which is equal to 1. Next, we consider only the even smooth
approximation of the Dirac function δ x( ), which corresponds to the
symmetrical distribution of values of V around zero.

To find the MBSs, we set E=0 in (8), and therefore in the
expressions for the Green function (see (6), (7) and the remark after
(7)). Then, by (5), p p p Δ M= = = ± −1 2

2 2 . To obtain the decrease of
the eigenfunctions at infinity, we have to assume that M Δ| | > | | (see [8]
where the authors show the necessity of this condition for the existence
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