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A B S T R A C T

We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k
→

= 0∥ , taking into
account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the
surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs
gives rise to the repulsion between the spinless magnetoexcitons with k

→
= 0∥ in the Fock approximation, with the

interaction constant g decreasing inverse proportional to the magnetic field strength B g B( (0) ∼ 1/ ). In the
presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and
nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They
move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D
magnetoexcitons with k

→
= 0∥ . The changes of the Coulomb interactions caused by the electrons and by the holes

moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric
field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the
magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous,
semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of
their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous
asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these
cases the interaction constant g have the dependence g B(0)~1/ .

1. Introduction

Magnetoexcitons are the bound states of the electron-hole pairs
situated on their Landau levels and with the center of mass 2D wave
vector k

⎯→⎯

∥ . The interaction between the two-dimensional (2D) magne-
toexcitons differs essentially from the Wannier-Mott excitons. The
Landau quantization of the 2D electrons and holes in the perpendicular
magnetic field is characterized by the quantum orbits, whose radii do
not depend on their effective masses, but only on the magnetic length
l0. In the Landau gauge the quantum orbits are characterized by the
gyration points depending on the unidimensional wave numbers p and
q side by side with the quantum numbers ne and nh of the electron and
hole Landau levels. If k

→
= 0∥ and n n= = 0e h , then the magnetoexcitons

quantum orbits are overposed. If there is no an external electric field
and the excited Landau levels are not taken into account the magne-
toexcitons look as the neutral objects without the Coulomb interaction
between them. It has been shown first in Refs. [1–3] that such
magnetoexcitons form an ideal 2D Bose gas, and later studied in more
detail in Ref. [4]. However, interaction between the magnetoexcitons
with k

→
= 0∥ and with the electrons and holes being on the lowest

Landau levels (LLLs) with n n= = 0e h become possible if the virtual
transitions from the LLLs to the ELLs with arbitrary quantum numbers
n and m and their return back is considered for the spinless electrons
and holes taking part in the Coulomb scattering. In the second order of
the perturbation theory these virtual transitions give rise to the indirect
attraction between the particles supplementary to their direct Coulomb
interaction. The impact of this supplementary interaction on the
chemical potential of the Bose-Einstein condensed magnetoexcitons
and on the ground sate energy of the metallic-type electron-hole liquid
(EHL) was investigated in Ref. [5]. It was shown that the supplemen-
tary interaction is attractive in the Hartree approximation, and leads to
repulsion in the Fock approximation stabilizing the Bose-Einstein
condensed magnetoexcitons with k

→
= 0∥ against the collapse. One more

possibility is the influence of the external electric field perpendicular to
the surface of the quantum well and parallel to the external magnetic
field. In this case the interaction does appear. The spin wave functions
of the electrons and holes are characterized by the different Landau
quantization numbers for different spin-projections and in this case the
Rashba spin-orbit coupling (RSOC) comes into play. We will consider
this variant starting with the exact solutions describing the Landau
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quantization of electrons and holes with spins projections under the
influence of RSOC, the Zeeman splitting effects and the nonparabolicity
(NP) of the heavy-hole dispersion law obtained recently in Refs. [6,7].
The Hamiltonian of the Coulomb electron-electron interaction for these
conditions was obtained in Refs. [8,9].

Side by side with our coplanar system in the literature widely is
discussed the two-layer separated electron-hole system in which
electron and hole are localized in separate wells [10–14]. In such
systems the indirect excitons are formed. Due to the distance between
the wells the indirect excitons both in ground state and in the excited
states have electrical dipole moments. So, the indirect excitons interact
as the parallel dipoles in the two-layer structures or as the oppositely
oriented dipoles in the three-layer structures. They are completely
different from the case which is discussed below.

2. Influence of the excited Landau levels

The Hamiltonian of the Coulomb electron-electron interaction for
the 2D electrons and the heavy holes situated only on the LLLs has the
form [1–4]
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where S∼ is the quantum well surface area, ε0 is the dielectric constant,

ρ Q(
⎯→⎯

) is the optical plasmon operator, which can be expressed through

the electron and hole plasmon operators ρ Q(
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Here a a,t t
† and b b,t t

† are the Fermi electron and the heavy-hole
operators describing the particles on their LLLs with n n= = 0e h . The
supplementary interactions of the electrons and holes lying on the LLLs
but undergoing the virtual Coulomb scattering with transitions to the
ELLs and back are described by the Hamiltonian obtained in Ref. [5]:
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where the coefficients ϕ p q k( , , )i j− are determined by the formulas (14)
of the Ref. [5]
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The Coulomb matrix elements are determined by the expressions (5) of
the Ref. [5]
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where ψ ρ ψ ρ(→), (→)n p
i

m q
j

, 1 , 2 are the 2D spinless electron and hole wave
functions, whose Landau quantization states are given by quantum

numbers n, m, and p, q in the Landau gauge. The electron-electron and
hole-hole Coulomb integrals and the coefficients ϕ p q z( , , )i i− depend on
the difference p q− , whereas the electron-hole Coulomb integrals and
the coefficients ϕ p q z( , , )e h− depend on the sum p q+ of quantum
numbers p and q. The Hamiltonian describing the full Coulomb
interactions of the electron-hole system includes the direct and the
supplementary components expressed by the formulas (1) and (3)
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The exciton creation operator and the wave function of the 2D

magnetoexciton with wave vector k
→

∥ obtained in Refs. [1–4] are
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Here |0> is the vacuum state of the e-h system, N determines the
degeneracy of the Landau levels, a→1 and a→2 are the unit in-plane vectors,
l0 is the magnetic length, and B is the magnetic field strength. The
indices n n= = 0e h at the electron and hole operators were omitted.

The binding energy of the magnetoexciton determined by the
Coulomb electron-hole direct and supplementary interactions is de-
termined by the average value of the Hamiltonian (6)
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In the last summation we take into account that ϕ p q z( , , )e h− depends on
the sum p q+ and ϕ p k p z( , − , )e h x− does not depend on p. The value of
Δ(0) was determined in Ref. [5]
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It leads to the lowering of the lowest magnetoexciton energy level on
the energy scale in comparison with its position in the absence of the
supplementary indirect interaction and to the increasing of its ioniza-
tion potential.

The following wave function ϕ| >0 is used to determine the interac-
tion of two magnetoexcitons with electrons and holes being on the

LLLs with the wave vectors k
→

= 0∥
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Our goal is to determine the interaction between the magnetoexcitons.
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