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ARTICLE INFO ABSTRACT

We investigate the coherent phonon thermal transport at low temperatures in Gold nanowires, in order to study
the effects of scattering on the lattice thermal conductivity. Three types of shaped joint nanostructures are
employed in our calculation. We present a detailed study of the thermal conductance as a function of the
temperature for different shaped joint. This is done by solving the phonon Boltzmann transport equation in the
ballistic regime and calculating the transmission rates of the vibration modes through the consideration of the
phonon group velocity modification in the system. The transmission properties are calculated by use of the
matching method in the harmonic approximation with nearest and next nearest neighbor force constants. The
results show that the transmission probabilities depend on the type of joint nanostructure. The pronounced
fluctuations of the transmission spectra as a function of the frequency can be understood as Fano resonances. It
is also found that the behavior of the thermal conductance versus temperature is qualitatively different for
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different nanostructures and depends sensitively on the width of the shaped joint.

1. Introduction

Nanometer scale material forms exotic structures and are attracting
a great interest due to the novel physical and chemical properties that
appears in these materials. Interest in nanostructures is motivated by
the increasing need to acquire knowledge of their properties for high
technology applications. There is, consequently, an increasing volume
of experimental data to elucidate the structural [1], magnetic [2], and
electronic [3], properties of quasi-one dimensional nanostructures.
Shaped joint in these materials at nanoscales may break the translation
symmetry, which leads to several effects, such as localized states, wave
reflection, and resonant scattering, [4].

Modern technology has enabled the fabrication of materials with
characteristic dimensions of a few nanometers. Examples are super-
lattices [5], nanowires [6], and quantum dots [7]. The ability to
generate such one-dimensional nanostructures is essential to modern
science and technology [8]. It is generally accepted that quantum
confinement of the electrons in low dimensional systems may provide
one of the most powerful means to control the properties of functional
materials. Among these materials, one dimensional nanostructure such
as wires has become the focus of an intensive research owing to their
unique properties.
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Metallic nanowires, have attracted a great deal of attention, since
they show very interesting properties from a basic science viewpoint, as
well as great potential in applied fields such as nanoelectronics, [9].
This interest has mainly risen with the fact that very thin metal
nanowires were shown to be stable structures [10]. The atomic gold
nanowire is the best-studied atomic-sized conductor, and a great deal
of detailed information is available from experiments [11] and
theoretical studies [12]. A wealth of experimental and theoretical
studies on ballistic electron transport in various configurations has
been reported [13]. In contrast, little attention has been paid to the
study of heat transport by phonon in nanostructures. Recent theore-
tical, and experimental findings, proved the existence of a quantum of
thermal conductance in ballistic regime, which is similar to a quantum
of electronic conductance.

In recent years, phonons thermal transport was reported in several
of nanostructures. Using the Landauer formulation of transport theory,
the thermal conductance in dielectric quantum wire at low tempera-
tures was calculated [14], and verified by experiment [15]. Motivated
by these experimental and theoretical works, phonon thermal transport
were investigated in various quantum wire structures such as a
nanowire with surface roughness [16], with typical structure defect
[17], and with stub quantum structures [18], in an asymmetric
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quantum structure [19], and four-terminal mesoscopic dielectric
system [20]. In recent work we have calculated the phonon transmis-
sion coefficient in quasi-1D systems [21], by applying formalism for the
vibration dynamics and scattering comparable to that of Landauer-
Biittiker.

This paper is aimed to develop a theoretical modeling to investigate
the effect of shaped joint nanostructure on heat transport in Gold
nanowires. This is done by calculating the transmission rates of the
vibration modes through the consideration of the phonon group
velocity modification in the system. Our challenge is to calculate the
phonon transmission probabilities for the individual phonon modes, as
a function of the propagating frequencies of the system and to
determine the heat transport by use of the Landauer-Biittiker formal-
ism for thermal transport in the ballistic regime.

The paper is organized as follows. In Section 2, we present the
phonon heat transport formalism. Section 3, review the dynamical
properties of the perfect Gold nanowire. A description of the formalism
for calculating the phonon transmission via a shaped joint nanostruc-
ture is described in Section 4. The transmission spectra are calculated
by use of the matching method in the harmonic approximation with
central nearest and next nearest neighbor force constants. The salient
numerical results are presented in Section 5, along with the conclusion
of the paper.

2. Phonon heat transport formalism

Landauer formulation of quantum transport showed that when
elastic scattering dominates, the electrical conductance can be related
to the transmission coefficient of the electron waves [22]. The applica-
tion of similar ideas to the phonon counterpart was recently derived by
a number of authors [23].

Let us imagine a perfectly harmonic and translational invariant
system, totally free of defects. In this situation, the heat transfer
associated with a small temperature difference, is given by the sum of
the contributions of the individual phonons. If we look at the transport
by the left moving phonons, the heat flow is given by

Qir =
LR = Z (1)

For the transport by the right moving phonons, the heat flow is
given by
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The phonon heat flow associated with a small temperature differ-
ence AT, is given by

Q= ATZ

where ¢ is the wave vector, w,(¢) is the dispersion relation of the vth
discrete mode, and v,,=dw,/dq is the group velocity. T is the tempera-
ture, # is the reduced Planck's constant, n (T, o,) = [exp('""" D! is
the Bose-Einstein distribution function of the phonons and kg is
Boltzmann's constant.

The phonon thermal conductance k is obtained from Q , which is
the difference between Qg and Qgr. k=Q/AT in the limit AT 0. Hence,
at T=(Tp+Tr) /2, the expression of thermal conductivity k can be
written as [29]

k=
; 4

Finally, introducing the scaled variable f=1/kgT, @p,=aqq (a=X, y),
Qy=0y/wg and vg,=dQ,(q)/dpy, gives the expression of thermal con-
ductivity as:
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More generally we cannot assume a crystal totally free of defects, in
our cases, the shaped joint introduce scattering at the boundaries. This
can be taken into account, following the Landauer approach, through a
transmission coefficient for energy transported across the nanostruc-
ture and we would find a thermal conductance as
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where t,(Q) is the energy transmission coefficient from mode v of left
domain at frequency 2 across the shaped joint nanostructure into the
modes of right domain. The effect of scattering is introduced through
the transmission coefficient t,(Q), where t,(Q) can be derived by use of
the matching method as we shall see in Section 4.

3. Phonon dispersion and group velocities

It is well known that phonon spectrum undergoes strong modifica-
tion in nanostructures. It is particularly pronounced when the nanos-
tructure dimensions are much smaller than the phonon mean-free
path. It has been predicted [24] that the modification of phonon
spectrum, in nanowires can lead to a significant decrease of the lattice
thermal conductivity due to changes in the phonon group velocity and
phonon relaxation rates [24,25]. The decrease of the phonon group
velocity in nanostructures results in strong enhancement of the phonon
scattering on defects [24].

The linearized equation of motion governing the fluctuation field for
atoms located at sites [ far from the shaped joint boundary in gold
nanowire, is given in the harmonic approximation, by the following
expressions

@*m (Vg () = —Zp 2125k A, 1)dy. dyld®[ug (1)-uy ()], )

where (a, B) €{x, y}, m=m (I) denotes the monatomic mass throughout
the system, and u,(J) represents the vibration displacement along the a
direction. The radius vector d between atomic sites [ and [I’, has
Cartesian components d, and d=|d|. The force constants k(l, )
between two sites are k; and ko for nearest and next nearest neighbors
respectively. The system of linear equations from Eq. (7), may be cast
in the form

[Q2%I-D (z, y)]IU > = 0. (8

|U> is the displacement eigenvector in a unit cell. D(z, y), is the
dynamic matrix where z=exp(iaq,) is a generic phase factor between
neighboring sites, and I is the unit matrix. Note that Q=w/w is a
dimensionless frequency, where wo=(k;/m)'/? being a characteristic
frequency taken as wy=13.04710'% s and y=k,/k;=0.135.

The diagonalisation of the dynamical matrix D(z, y) for z=exp
(iaqy), leads to the propagating eigenmodes and the corresponding
eigenvectors of the nanowire. The resulting dispersion curves may be
given as a function of @, in the first BZ, where the dimensionless wave
vector along the x direction is given as @y =aqy, qy is the reciprocal
lattice wave-vector along the x direction in the first BZ.

It is well known that energy through the system can only propagate
by means of traveling waves with a group velocity defined as Vg=dQ/
dq, which is the speed of the energy transport. The phonon group
velocity, one important parameter that can be found from the disper-
sion relation, is simply the slope of the branch on the dispersion curves
for each frequency Q.

4. Phonon transmission via a shaped joint nanostructure
Consider the scattering of the propagating modes in the Gold

nanowire by the shaped joint nanostructure, as is depicted in Fig. 2a.
In order to analyze the scattering it is necessary to identify the
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