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A B S T R A C T

This work presents the modeling of a beam energy harvester scavenging energy from ambient vibration based
on the phenomenon of flexoelectricity. By considering surface elasticity, residual surface stress, surface
piezoelectricity and bulk flexoelectricity, a modified Euler-Bernoulli beam model for the energy harvester is
developed. After deriving the requisite energy expressions, the extended Hamilton's principle and the assumed-
modes method are employed to obtain the discrete electromechanical Euler-Lagrange's equations. Then, the
expressions of the steady-state electromechanical responses are given for harmonic base excitation. Numerical
simulations are conducted to show the output voltage and the output power of the flexoelectric energy
harvesters with different materials and sizes. Particular emphasis is given to the surface effects on the
performance of the energy harvesters. It is found that the surface effects are sensitive to the beam geometries
and the surface material constants, and the effect of residual surface stress is more significant than that of the
surface elasticity and the surface piezoelectricity. The axial deformation of the beam is also considered in the
model to account for the electromechanical coupling due to piezoelectricity, and results indicate that
piezoelectricity will diminish the output electrical quantities for the case investigated. This work could lead
to the development of flexoelectric energy harvesters that can make the micro- and nanoscale sensor systems
autonomous.

1. Introduction

With the miniaturization and integration of electronic components,
developing miniature power packages and self-powering techniques
will be the key challenge in a variety of applications, including wireless
sensing, environmental monitoring, implantable medical devices, per-
sonal electronics and etc. Consequently, researchers are developing
innovative nano-technologies to generate or store the electrical energy
created from ambient environment for low-power nanodevices. In
particular, nanostructured piezoelectric materials, which can directly
generate electric charges when mechanically deformed, have attracted
significant attention for building energy harvesters in the last decade.
In 2006, Wang and Song [1] demonstrated the first piezoelectric
nanogenerator for converting mechanical energy into electricity using
ZnO nanowires. Subsequently, energy harvesters of various designs
based on the piezoelectric effect have been demonstrated [2–5].
Besides, triboelectric nanogenerators have recently been successfully
fabricated based on the electrostatic effect [6,7]. In principle, a
technique that is capable of generating electric charges can be exploited
to develop energy-harvesting devices. Therefore, a spontaneous electric
polarization induced by a non-uniform strain field (or strain gradient),

termed as flexoelectricity, is highly possible to achieve such a purpose.
The flexoelectric effect was discovered in the 1950s [8], but very

limited attention was paid to it for a long period of time due to its
expected weak effect. The revival of scientific interest in flexoelectricity
started from the early 2000s. At that time, Ma and Cross [9–12]
measured the flexoelectric coefficients of a series of materials such as
relaxor and ferroelectric dielectrics, and found that the measured
constants were remarkably larger than expected. Their experiments
also confirmed the prediction made by Tagantsev [13] that the flexo-
electric coefficient of a material is proportional to its dielectric
constant. Since the strain gradient becomes more manifest with the
decrease of the characteristic size of the structure, the strain-gradient
associated flexoelectric effect is a size-dependent property and becomes
significant at the nanoscale. Naturally, flexoelectricity gains more and
more attention with the growing interest in nanoscience.
Flexoelectricity has been found to play an important role in the physical
properties of ferroelectric thin films and is responsible for some
unusual electromechanical behaviors that emerged at submicron
scales, such as asymmetry of polarization hysteresis curves [14],
polarization switch [15] and polarization rotation [16]. In addition,
the physical and mathematical formulations for dielectrics have been
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developed to account for the flexoelectric effect. As examples, Catalan
et al. [17] presented a phenomenological model for ferroelectric thin
films and considered the flexoelectricity by adding two extra terms to
the conventional Landau-Ginzburg-Devonshire (LGD) free energy
expression. Maranganti et al. [18] developed a general formulation
for dielectrics including the flexoelectric effect based on the variational
principle and provided Green's function solutions for the governing
equations of an isotropic centrosymmetric continuum medium. Shen
and Hu [19] established a more comprehensive framework for
nanoscale dielectrics with the consideration of surface effects in
addition to flexoelectricity. Later, extensive studies have been con-
ducted to understand the influence of flexoelectric effect on the
electromechanical coupling properties of various nanostructures [20–
25]. The exploitation of flexoelectricity also leads to tantalizing
applications. For example, the flexoelectric control of defect formation
allows a nearly defect-free film with fully functional electronic proper-
ties [26]. Since flexoelectricity occurs in all 32 crystallographic point
groups, unlike piezoelectricity which exists only in 20 noncentrosym-
metric point groups, one interesting application of flexoelectricity is to
create apparently piezoelectric materials without using piezoelectric
materials [27]. Chandratre and Sharma [28] numerically validated
such an idea, they considered a graphene nanoribbon impregnated
with holes and found that the artificially structured material would
exhibit piezoelectricity as long as certain symmetry rules of holes were
followed. In a similar vein, Zelisko et al. [29] confirmed in their work
that flexoelectricity and triangular defects cause graphene nitride to
exhibit an apparent piezoelectricity. As piezoelectric nanomaterials
have gained popularity for energy harvesting, not surprisingly, the
potential for the use of flexoelectricity in energy harvesting has also
been addressed by researchers. For instance, significant enhancement
of the piezoelectric coefficient of a piezoelectric nanobeam/ribbon due
to flexoelectric effect was reported [3,30], which is essential for energy
harvesting applications. Deng et al. [31] have developed a theoretical
continuum model for flexoelectric nanoscale energy harvesting. Very
recently, Wang and Wang [32] presented an analytical model for
nanoscale unimorph piezoelectric energy harvesters with the flexo-
electric effect. Their results showed that the flexoelectric effect can play
a major role in the energy harvesting of piezoelectric cantilever
nanobeams. However, the flexoelectric energy harvesting is still a
burgeoning concept and its fundamental principles governing the
energy conversion need to be further understood.

On the other hand, surface effects are widely recognized to
significantly affect the mechanical and physical properties of nanoscale
structures. Based on Gurtin and Murdoch's [33] linear surface elasticity
theory and its extended theories, a great number of studies have been
conducted to examine the influence of surface effects on static and
dynamic behaviors of elastic and piezoelectric nanomaterials [34–38].
As the size of an energy harvester reduced to nanoscale, it is natural to
believe that surfaces effect will influence its energy-harvesting perfor-
mance. Taking surface effects into consideration, Wang and Wang [39]
studied the energy-harvesting performances of a piezoelectric circular
nanomembrane under human blood pressure; Fan and Yang [40]
examined a nano energy harvester under flexural vibration. However,
the working mechanism of these energy harvesters are based on the
effect of piezoelectricity, rather than flexoelectricity. In this work, a
comprehensive continuum model of a nanoscale flexoelectric energy
harvester under harmonic base excitation is developed. The surface
effects including surface elasticity, residual surface stress and surface
piezoelectricity as well as the effect of beam axial deformation are
incorporated into the model. The performance of the proposed flexo-
electric energy harvesters is revealed and discussed. The proposed
energy harvester provides a solution for energy harvesting at the
nanoscale. Since it is based on a simple structure that can be made
of a wide range of materials, it is perhaps even better than piezoelectric
nanogenerators under some extreme conditions and is thus ideal for
mirco- and nanoscale applications.

2. Euler-Bernoulli model of a flexoelectric energy harvester
with surface effects

Consider a flexoelectric beam energy harvester configuration shown
in Fig. 1, L, b and h are the beam length, width and thickness,
respectively. The configuration has a single flexoelectric bulk core made
of piezoceramic and the circumferential surfaces are adhering to the
bulk with negligible thickness. A Cartesian coordinate system x y z( , , ) is
used to describe the beam, where x-axis is along the beam longitudinal
direction and z-axis is along the beam thickness direction, which is also
the poling direction of the piezoelectric body. The beam is mounted to a
base moving in the z direction with the transverse base displacement
being denoted by wb(t). It is assumed that the conductive electrodes
fully cover the upper and lower surfaces of the beam and are directly
connected to a resistive load R. The voltage across the resistor R is v(t),
which can be regarded as the output voltage of the flexoelectric energy
harvester.

Based on the Euler-Bernoulli beam model, the displacement fields
at any point in the beam and time t can be defined as
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where u x t( , )0 is the axial displacement along the centroidal axis of the
beam and w x t( , ) is the transverse displacement relative to the moving
base. Accordingly, the axial strain εx and the strain gradient εx z, can be
written as
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It should be mentioned that the strain gradient εx x, is small as
compared to εx z, for a thin beam and thus is not considered here
[20]. The electric field in the beam is assumed to exist only in the z-
direction and expressed as E v t h= − ( )/z , which also indicates that the
gradient of the electric field in the piezoelectric beam is zero. Therefore,
the expression for the bulk electric Gibbs free energy density function
ub of the beam including the strain gradient induced flexoelectricity
can be written as
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where c e,11 31 and a33 are the bulk elastic, piezoelectric and dielectric
constants, respectively. f is the direct flexoelectric constant and g
represents the purely non-local elastic effect.

Then the total bulk energy in the volume (V) of the structure is
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The surface energy Us of the investigated beam with a surface area
a can be expressed as [41]
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where σ0 is the residual surface stress, εx
s is the axial surface strain, and

σx
s is the axial surface stress and can be expressed by

Fig. 1. Schematic of a flexoelectric beam energy harvester under base excitation and
cross-sectional view of the cantilever beam.
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