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A B S T R A C T

We calculate the spin susceptibility for the case of gapped graphene systems in the presence of disorder. The
average single-particle density of states in gapped graphene with disorder was calculated, using the Born and
the T-matrix approximations. The temperature dependence of the static spin susceptibility was analyzed. The
influence of the chemical potential position and disorder is also discussed.

1. Introduction

Graphene, a two-dimensional carbon atom based material, where
carbon atoms are disposed on a hexagonal lattice, was synthesized
about a decade ago [1]. This mono-layer material has unusual proper-
ties due to the Dirac-like band structure, where conduction and valence
bands touch at six points at the edges of the honeycomb Brillouin zone
[2,3], two of these being nonequivalent (named as K and K′ points [4]).
Around these points the quasiparticle excitations follow a linear Dirac-
like energy dispersion responsible for many physical phenomena (see
Refs. [4] and [5]). Despite of the graphene's outstanding physical
properties, many electronic applications require the presence of an
energy-gap between the bands. We have to mention that several
experimental measurements indicate the presence of an energy-gap
in the graphene quasiparticle spectrum [6–8]. Here the nature of the
gap can be attributed to the effect of the substrate. Recently, magnetic
measurements [9] revealed strong magnetism in fluorinated graphene.
These materials exhibit a reversible magnetic response and a magnetic
susceptibility that can be split into a temperature-independent term, a
small Curie-like component, and a strong non-Curie spin susceptibility.
The spin susceptibility reflects the low-dimensional nature of the spin
system, and reveals the presence of an energy gap Δ. The gapped
energy spectrum was considered in order to analyze the anomalous
growth of thermoelectric power in graphene [10] (massive gapped
spectrum), and the phenomenological massless gapped spectrum was
introduced [11] to reconcile the gapped nature of the energy spectrum
and the massless character of the particles in graphene, and to correctly
explain several spectroscopic measurements [12]. On the other hand,
the fabricated graphene samples are not pure. The presence of disorder
can affect the properties of graphene, giving a finite lifetime of the
electronic eigenstates. The lifetime damping rate gives a single-particle
level broadening and changes the electronic density of states. Many of

the physical properties will be modified through the changes of the
electronic density of states. In the present paper we will calculate the
density of states for a gapped system in the presence of disorder, and
we will use the results in order to analyze, in a qualitative way, the
temperature dependence of the static spin susceptibility, recently
measured in graphene-based structures with lower fluorine contents
[9]. The paper is organized as follows: In Section 2 we discuss the
system's density of states, in a general form. In Section 3 we calculate
the self-energies of a gapped system in the presence of disorder,
working in the Born and in the T-matrix approximations. Using these
results, in Section 4 we determined the static spin susceptibility and we
analyze the influence of various parameters on its temperature
dependence. In Section 5 we give the conclusions.

2. Density of states

The single-particle density of states is defined by [13] ( = 1):

∫∑ρ ε g
π

d k
π

ImG k ε( ) = −
(2 )

(
→

, )
λ

λ
2

2
(1)

where: g g g= = 4s v is the degeneracy factor for graphene, λ – the band
index, and G k ε(

→
, )λ – the retarded Green's function. The wavevector

integration is taken over a circle of radius kc. The retarded Green's
function, expressed in terms of retarded self-energy Σ k ε(

→
, )λ , is given

by:
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Using Eq. (2), the single-particle density of states becomes:
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In the following we will assume that the self-energy is k
→

and λ
independent, and we introduce the notations:

Γ ε ImΣ k ε( ) = − (
→

, )λ (4)

and:

Ω ε ε ReΣ k ε( ) = − (
→

, )λ (5)

The dispersion law for graphene, in the presence of a gap Δ, is [6,7]:

ε λ v k Δ= +k λ F,
2 2 2 (6)

where λ = ± 1, correspond to the conduction and valence bands, k - is
the value of the wave vector, and vF is the Fermi velocity of graphene.
After performing the two dimensional wave vector integration, we
obtain for the density of states:
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This result reduces to Eq. (16) from Ref. [14] when Δ tends to zero.
Here: ε v k=c F c is the energy cutoff. In the wide band limit, the above
density of states can be approximated as:
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which is a result similar to the density of states obtained in Ref. [15]
concerning impurity-induced quasiparticle transport in d-wave super-
conductors.

3. The self-energy

In the following we will consider the approximations to the self-
energy, described below.

(a). Born approximation In the Born approximation, and in the
presence of a gap, the self-energy is given by the following expression:

Σ γ Σ=B B 0 (9)
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with ni – the impurity density, and U0 correspond to the Fourier

transform of the impurity potential. The approximation U k U(
→

) = 0 is
valid as long as the unscreened short-range disorder is considered, and
the intervalley processes are neglected. The Σ0 part is:

∫ ∑Σ v d k
π

G k ε F k k= 2 ′
(2 )

( ′
→

, ) (
→

, ′
→

)F
λ

λ λλ0
2

2

2
′

′
(0)

′
(11)

Here G k ε( ′
→

, )λ′
(0) is the bare Green's function:
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and F k k(
→

, ′
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)λλ′ is a function that describes the overlap between ψk λ,
and ψk λ′, ′ wave functions which are periodic with the lattice. Near the
Dirac point:
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with λ and λ′ – band indices, and θ – the angle between k
→

and k′
→
.

Considering elastic scattering, and neglecting the interband scattering,
the self-energy in the Born approximation can be evaluated as:
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for energies ε ε Δ Δ Δ ε Δ∈ [− + , − ] ∪ [ , + ]c c
2 2 2 2 (due to the branch

cuts of the logarithm function).
(b). T-matrix approximation In this case one has to consider

the summation of the entire series of Feynman diagrams concerning
scattering, using the bare Green's function. The impurity averaged T-
matrix (self-energy), for a constant impurity potential, is:
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U

=
1 −T

B

0 (15)

with ΣB given by Eq. (9). Here we introduced the notation:
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The self-energy becomes:
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In the presence of the gap, using Eqs. (14) and (9), we obtain:
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where:

⎧⎨⎩
⎫⎬⎭ReΣ

γ
N

ReΣ U
v

ReΣ ImΣ= −
2

([ ] + [ ] )T
B

F
0

0
2 0

2
0

2

(19)

ImΣ
γ
N

ImΣ=T
B

0 (20)

with:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥N U

v
ReΣ U

v
ImΣ= 1 −

2
+

2F F

0
2 0

2
0
2 0

2

(21)

(ReΣ0 and ImΣ0 can be obtained immediately from Eq. (14)). We
observe that both ΣB and ΣT depend only on energy, and are
independent of k and λ.

4. The spin susceptibility

Using the densities of states, for the Born approximation and T-
matrix approximation cases, the static spin susceptibility will be
determined using the relation [16] (k = 1B ):
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Here gL – is the Lande electron g-factor, μB – is the Bohr magneton,
and μ – the chemical potential. For the disordered gapped system the
energy integration range will be the interval determined in Sec.III (see
also Ref.[17]).

For the Born approximation case, taking into account the appro-
priate density of states and self-energy, we plot in Fig. 1 the
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