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A B S T R A C T

Solar power variability is a concern to grid operators as unanticipated changes in PV plant power output can
strain the electric grid. The main cause of solar variability is clouds passing over PV modules. However, geo-
graphic diversity across a region leads to a reduction in the cloud-induced variability. In this paper, spatio-
temporal correlations of irradiance data are analyzed and spatial and spatiotemporal ordinary Kriging methods
are applied to model irradiation at an arbitrary point based on the given time series of irradiation at some
observed locations. The correlations among the irradiances at observed locations are modeled by general
parametric covariance functions. Besides the isotropic covariance function (which is independent of direction), a
new non-separable anisotropic parametric covariance function is proposed to model the transient clouds. Also, a
new approach is proposed to estimate the spatial and temporal decorrelation distances analytically using the
applied parametric covariance functions, which reduce the size of the computations without loss in accuracy
(parameter shrinkage). The analysis has been performed and the Kriging method is first validated by using two
spatially and temporally resolved artificial irradiance datasets generated from Large Eddy Simulation. Then, the
spatiotemporal Kriging method is applied on real irradiance and output power data in California (Sacramento
and San Diego areas) where the cloud motion had to be estimated during the process using cross-correlation
method (CCM). Results confirm that the anisotropic model is most accurate with an average normalized root
mean squared error (nRMSE) of 7.92% representing a 66% relative improvement over the persistence model.

1. Introduction

1.1. Motivation

As demands for integration of large amounts of photovoltaic (PV)
power plants into the electricity grid have increased recently, fully re-
solved (time steps on the order of seconds and spatial resolution on the
order of 10m) spatiotemporal irradiance data is needed. Simulations of
solar power output for distribution feeder power flow studies (Nguyen
and Kleissl, 2015) and short-term forecasting of power output from
large power plants (Lipperheide et al., 2015) are some applications of
such fully resolved irradiance data. Ground measurements of solar ir-
radiance are sparse and continuous high quality measurements require
more effort in maintenance and data quality control than common
meteorological state variables (Vignola et al., 2013). On the other hand,
temporal downscaling and spatial interpolation is usually required for
satellite-derived irradiance data with coarse temporal resolution at
15–30min and large pixel size (1 km or more). Therefore, an inter-
polation technique is required to provide such spatially and temporally
resolved irradiance data at unobserved locations. While linear

interpolation techniques may be appropriate to estimate the average
annual solar resource at unobserved locations, they reduce the solar
irradiation variance at unobserved locations and do not preserve cor-
relation properties.

1.2. Kriging as a stochastic interpolation method

As an alternative to linear interpolation, a stochastic interpolation
method (i.e., Kriging method) can be applied to high fidelity solar re-
source modeling at unobserved locations. The Kriging method is su-
perior to deterministic interpolation techniques (which use only
mathematical functions; e.g. Widen (2015)) since both analytical and
statistical methods are applied to predict unknown values based on
correlations in the irradiance data. Kriging methods have been shown
to be the best linear unbiased prediction method in many fields of
study. In the Kriging method, the mean and correlation properties of the
irradiance data are preserved and an estimation of the error of the
process (Kriging variance) is provided as a basis for stochastic simula-
tion. The Kriging method can be applied to both ground measured as
well as satellite-derived solar irradiance data for spatial interpolation,
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temporal downscaling, or forecast of the irradiance data. A literature
review of state-of-the-art spatiotemporal Kriging methods is provided in
Perez et al. (2016). According to Perez et al. (2016), various forms of
the spatiotemporal Kriging are used in solar engineering: simple Kriging
assumes that the mean of the process across space and time is known.
Otherwise, ordinary Kriging (assuming unknown but constant mean)
and universal Kriging (assuming the unknown mean is a known func-
tion of co-variates, e.g., latitude, longitude) can be used. In this paper,
the spatial and spatiotemporal ordinary Kriging method is applied to
estimate irradiation at an arbitrary point.

In the Kriging method, irradiance correlations are modeled by a
parametric spatiotemporal covariance function and parameters are
calculated empirically (Zimmerman and Stein, 2010; Zimmerman,
1989) based on some simplifications and assumptions including sta-
tionarity, separability, and isotropy. In a temporal (or spatial) sta-
tionary process, the mean and other statistical properties of solar ra-
diation is constant over time (or space) and the covariance function is a
function of time lags (or distance between locations) only; spatio-
temporal stationarity of solar radiation is achieved if the process is
stationary both spatially and temporally. In a separable covariance
function, the spatial solar radiation variation is independent of its
temporal variation. Gneiting (2002) and Gneiting et al. (2007) de-
monstrated special requirements for covariance functions and showed
that the geostatistical covariance functions cannot be considered se-
parable (especially for meteorological data such as wind velocity fields

or solar irradiance data). In isotropic covariance functions, the covar-
iance in solar radiation does not depend on direction.

1.3. Application of Kriging to irradiance data

Since the main source of spatiotemporal variability in irradiance
data are transient clouds, to increase the performance of the Kriging
method, anisotropic covariance functions are required to model tran-
sient clouds in the domain of investigation. Gneiting et al. (2007)
considered a physically motivated directional dependence of the cov-
ariance (Lagrangian covariance function): introducing anisotropy ac-
cording to the velocity vector of the flow, the covariance is a function of
(x-vt) where x, v, and t represent space, velocity vector, and time, re-
spectively. Adjusting an isotropic covariance function by a Lagrangian
covariance function has been shown to improve forecast of meteor-
ological data including wind velocity (Gneiting et al., 2007) and solar
irradiance data (Aryaputera et al., 2015). Schlather (2010) developed a
general form of the Lagrangian covariance by considering a variable
velocity vector with a multivariate normal distribution. The Lagrangian
covariance function is applied in many solar irradiance studies to ac-
count for anisotropy due to cloud motion (Lonij et al., 2013; Inoue
et al., 2012; Shinozaki et al., 2014). Yang et al. (2013), on the other
hand, achieved spatial stationarity and isotropy through deformations
of the geographical space based on the two-step method developed by
Sampson and Guttorp (1992).

Nomenclature

AST anisotropic spatiotemporal
C covariance function
CS spatial covariance function
CT temporal covariance function
CCM cross-correlation method
CGILS CFMIP-GCSS intercomparison of Large-Eddy and Single-

Column models
CSA cross-spectral analysis
GHI global horizontal irradiance
IS=0 Dirac delta function
IST isotropic spatiotemporal
L total number of bins of distances in the domain
LES Large Eddy Simulation
LOSO leave-one-site-out
LOSOE LOSO using the entire time series
LOSOP LOSO using past data
LOTO leave-one-time-step-out
LOTOE LOTO using the entire time series
LOTOP LOTO using past data
LWP liquid water path
N(h(l),u) number of pairs in each bin and time lag of the semivar-

iogram
PCSI measured CSI PV power output
Pmax,day PV output expected for a day with clear condition
PV photovoltaic
QC quality control
RICO rain in cumulus over the ocean
SDG&E San Diego Gas & Electric
SMUD Sacramento municipality utility distract
SP spatial
SR skill ratio
Z0∗ irradiance estimate at an arbitrary location (x0) and time

(t0)
Zij observed irradiance at location (xi) and time (tj)
a a coefficient of the parametric semivariogram function
c a coefficient of the parametric semivariogram function

h1 distance component in along-wind direction
h2 distance component in cross-wind direction
hc spatial decorrelation distance
h(l) number of bins in empirical semivariogram
kt clear-sky index
ktCSI kt for measured CSI power output
ktSMUD kt for measured SMUD GHI data
m number of time steps of time series
maxt maximum time lags between irradiance at site pairs
nRMSE normalized root mean squared error
u time lag in parametric covariance function
uc temporal decorrelation length
v cloud motion speed
wl,u weights function in weighted least squares (WLS) method
WLS weighted least squares
α a coefficient of the parametric semivariogram function
β separable factor in the spatiotemporal covariance function
γ prametric semivariogram function
γik

jl γ for |i-k| spatial and |j-l| temporal lag, respectively
̂γ empirical semivariogram function

γAI anisotropic semivariogram function
γFS isotropic semivariogram function
γLGR Lagrangian semivariogram function
Γ spatiotemporal semivariogram matrix
δ a coefficient of the parametric semivariogram function
ζ a coefficient of the parametric semivariogram function
λij weights of the Kriging method
μ Lagrange multiplier
νS nugget effects of the parametric semivariogram function
ρ parameter for convex combination model of anisotropic

semivariogram function
σ2 variance of the spatiotemporal process
σ2OK Kriging variance
φ general form of functions for stationary non-separable

parametric covariance function
ω general form of functions for stationary non-separable

parametric covariance function
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