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a b s t r a c t

A solar community of 100 residential houses was optimized for Finnish conditions with the aim of achiev-
ing a 90% solar fraction for both space heating and domestic hot water. Optimization was done using a
novel method based on neural network metamodelling and compared to the standard NSGA-II genetic
algorithm. Compared to NSGA-II, the new method obtained a larger hypervolume by finding better solu-
tions both in the center and edge of the non-dominated front. The combined non-dominated front of both
methods was better than either one separately. The performance target was achieved as the optimal solar
community designs had heating solar fractions ranging from 64% to 95%.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Global solar energy capacity continues to increase (van der
Hoeven, 2014). Unfortunately, a large penetration of solar genera-
tion capacity may cause problems with the electric grid due to the
diurnal and undispatchable nature of solar energy (Denholm and
Hand, 2011). Seasonal variability of solar energy is another major
problem, which is especially significant in high latitudes, such as
in the Nordic countries. To combat this problem, seasonal energy
storage is needed. Except for pumped hydro facilities, large scale
seasonal electricity storage is currently not economically feasible
(Beaudin et al., 2010; Pierpoint, 2016). Thermal storage, however,
is already a mature technology ready for deployment (Navarro
et al., 2016).

A typical thermal storage system is a hot water tank in a house,
for which the optimal size has been investigated before
(Rodríguez-Hidalgo et al., 2012). Such a system can even be used
to store excess electricity from solar panels to a limited degree
(Hirvonen et al., 2016). Tanks are usually only used for short-
term storage and additional systems may be needed for seasonal
storage. Underground tank-based seasonal storage was used in
the first practical Finnish solar community study (Lund, 1984),
though the storage turned out to be undersized. Different storage

technologies have been reviewed in Xu et al. (2014) and many
real-life projects summarized in Schmidt et al. (2004) and Bauer
et al. (2010)). One increasingly common seasonal storage type is
the borehole thermal energy storage (BTES), where the heat is
stored directly to the ground through boreholes drilled into rock
or soil (Rad and Fung, 2016). Thermal storage efficiency scales with
size, as heat losses get relatively smaller with increasing storage
volume. Because energy generation capacity also gets cheaper with
size, seasonal storage systems should be community solutions. A
successful example is the Drake Landing Solar Community in
Canada (Sibbitt et al., 2011), which has achieved a 98% solar frac-
tion for space heating (SH) through seasonally stored solar energy,
providing heat for 52 residential houses.

Such systems cannot be directly copied to other locations, but
need to be adjusted to the local conditions (Flynn and Sirén,
2015). Properties such as ground conductivity and thermal capac-
ity affect system performance. In this study, the Drake Landing
design is modified to supply both space heating and domestic
hot water (DHW) for a community in Finland (above 60�latitude).
Due to the high latitude, the winter heating demand is high while
seasonal solar variability is very large. There is practically no solar
energy available during winter, making seasonal storage manda-
tory to achieve high solar fraction in heating. To help achieve
higher temperatures required for DHW, a solar assisted ground
source heat pump is included in the energy system. To maximize
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the feasibility of the design, multi-objective optimization is used to
minimize both external energy demand and life cycle cost (LCC).

Many different methods exist for energy system optimization.
Recent storage-integrating district heating optimization studies
have been reviewed in Olsthoorn et al. (2016). Typical single-
objective optimization problems are about minimization of cost
or energy/exergy consumption, often solved using mixed integer
linear programming (MILP). For multi-objective optimization,
genetic algorithms such as NSGA-II (Deb et al., 2002) are a common
choice. A genetic algorithm was used to optimize the energy sys-
tem of a pre-simulated zero energy building in Ascione et al.
(2016) and also for optimizing the seasonal storage and solar heat-
ing system of a greenhouse (Durão et al., 2014). Other population-
based methods such as particle swarm optimization have also been
used for sizing solar power installations (Khare and Rangnekar,
2013). Simulated annealing has also been used for the same pur-
pose (Ekren and Ekren, 2010). Linear programming with sparse
revised Simplex was used to optimize the design for a hybrid
renewable energy community (Wang et al., 2015). Interval-linear
programming and chance-constrained programming were com-
bined in Cai et al. (2009) to perform optimization under uncertain-
ties, such as solar and wind availability. Similar interval-based
optimization was used for scheduling optimization of renewable
energy systems (Chen et al., 2015).

In simulation-based optimization, the actual simulations can
often take a long time compared to other processes in the opti-
mization. This makes it very important to minimize the number
of simulations required. One method to achieve this goal is to do
optimization in separate stages (Hamdy et al., 2013). This way,
unreasonable variable combinations can be filtered out and par-
tially optimized results used as inputs. Also, if some part of a sys-
tem model is independent of the others, it may be possible to
simulate it only one time and just use tabulated values for the rest
of the runs, reducing the need for time-consuming simulations.

Another way to reduce the need for simulations is through
metamodelling (or surrogate models) (Bornatico et al., 2013). A
metamodel is a model of a model, meaning that it is generated
out of output from another model. Metamodels are typically very
fast to run compared to detailed simulation programs. Utilizing a
metamodel can reduce function evaluation time from minutes or
hours to a fraction of a second. One metamodelling technique is
the use of artificial neural networks (ANN). The principles of ANN
are explained in detail in Kalogirou (2000). In short, neural net-
works use linear equations to find relations between inputs and
outputs and can be used to quickly simulate even phenomena that
are not completely understood, as long as proper training data is
available.

For example, ANN was used to make a metamodel out of a
TRNSYS building model, which was then used with a genetic algo-
rithm (GA) to do optimization (Asadi et al., 2014). First, parametric
runs were done to generate a database for training the ANN. The
ANN metamodel is very fast to use and allows quick optimization.
Unfortunately, generating an adequate training set to ensure the
accuracy of the metamodel requires a significant amount of simu-

lations, so actual time saving compared to direct optimization is
not guaranteed. Generally neural networks are trained with an
extensive dataset and then used to completely replace the original
model to complete optimization, as was done in Boukelia et al.
(2016) and Magnier and Haghighat (2010). However, other meth-
ods such as kriging have also been used for parallel optimization
and surrogate modeling (Hussein and Deb, 2016).

The novelty in this study is the introduction of a new neural
network based optimization method for problems where the func-
tion evaluation takes a long time compared to other calculation
processes. Instead of generating a complete training set before
optimization, the optimization is started with a very small training
set which is updated as the optimization progresses. The ANN is
retrained as new samples are added after each optimization step,
increasing the ANN accuracy and improving optimization results.
Additionally, instead of a single neural network for the whole
search space, several neural networks are trained in parallel, each
representing a different section of the objective space. The opti-
mization method will be applied to a solar community design
problem, which will reveal new information about solar heating
and seasonal energy storage in high latitude Nordic conditions in
the community scale. The objective is to find a range of energy-
economic optima for solar communities with a high solar fraction.
An important subobjective is to find a configuration with over 90%
solar fraction for heating.

2. Materials and methods

2.1. Energy system details and modeling

The study centers on a hypothetical Finnish solar community
with a local heating grid, modeled using TRNSYS 17 and first intro-
duced in ur Rehman et al. (2016). The solar community consisted
of a 100 residential buildings, each with a heated area of 100 m2.
The design of the centralized heating system is shown in Fig. 1.
Heat generated by the solar thermal collectors was stored in either
the high temperature domestic hot water (DHW) tank at around
60 �C or the low temperature space heating (SH) tank at around
40 �C, depending on tank temperature levels and the chosen con-
trol algorithm. If the tank temperature rose 10 �C above the set-
point, the energy in the tank was discharged into the seasonal
storage until the tank had cooled down enough.

The seasonal storage was a borehole thermal energy storage
(BTES), which is a grid of boreholes drilled into the ground. Each
borehole was fitted with U-tube piping which served as a heat
exchanger between the ground and heat transfer fluid. Several
boreholes could be connected in series so that the fluid exiting
from one borehole could be pumped into the next one. In charging
mode, hot fluid was pumped into the center of the storage and the
cooled output flow was directed into the next borehole in series.
Thus, a radial temperature distribution could be formed, where
the center of the storage had the highest temperature and the
edges had the lowest, minimizing heat losses to the surroundings.

Nomenclature

Abbreviation Explanation
ANN artificial neural network
BTES borehole thermal energy storage
DHW domestic hot water
G total incident solar radiation
HP heat pump
LCC life cycle cost

NSGA non-dominated sorting genetic algorithm
PV photovoltaics
SF solar fraction
SH space heating
SPF seasonal performance factor
ST solar thermal
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