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a b s t r a c t

The continuous growth of photovoltaic installations globally carries hope for a sustainable future but also
imposes challenges on all levels of energy production and distribution. Grid operators and designers have
to cooperate more closely with monitoring service providers in order to sustain a flexible scheme of
energy exchange. The basis of these calculations is accurate energy yield estimation models, which are
able to capture all effects of the environment. Especially for locations with highly dynamic irradiance
and environmental conditions, this remains a tough challenge. All photovoltaic energy yield models pre-
sented in this work aim at accommodating the inherent dynamism of these challenging locations at small
time scales. A detailed, physics based electro-thermal energy yield model is validated along with other
state-of-the-art models and performs 25% more accurately. Additionally, the results from the dynamic
modeling are transferred to a neural network model, increasing the accuracy further up to six times bet-
ter than any parametric solution.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The continuous growth of the photovoltaic energy sector, with
high percentages of penetration in the grid, has created new chal-
lenges for operators of installations and distribution grid (Masson
et al., 2014). The diverse scale of the installations, as well as the dif-
ferences in spatial distribution, necessitates novel, modular solu-
tions for the monitoring and control process in the form of
simulation tools.

State-of-the-art PV models for energy estimation either make
use of black box methods or parametric equations (Bizzarri et al.,
2013; Ceylan et al., 2014; King et al., 2004). Especially the thermal
part is simplified as the effects average out for coarse time resolu-
tions, usually bigger than 15 minutes. No internal state is kept for
the thermal system of the PV, leading to steady–state assumptions.
Also the wind effects usually are treated as secondary, and wind
direction is considered to have no significant contribution due to
the high variance. Consequently, those modeling approaches are
not able to calculate energy yield accurately during highly-
varying irradiance or environmental conditions.

The purposes of this work are threefold: first present a thorough
validation of a detailed dynamic PV model, with tight coupling
between the thermal and electrical part and its capabilities, includ-
ing the cross validation with recognized PV models. Second to
underline the important aspects of thermal modeling for high tem-
poral resolution models and their effect on the overall accuracy of
energy yield calculations. Sources of error are recognized and solu-
tions are proposed, in order to improve the behavior of dynamic
models. Thirdly, to explore alternative configurations for neural
network models and utilize the insights from the dynamic model-
ing in order to improve their performance.

The following sections are organized as follows: In Section 2 the
state-of-the-art in energy yield modeling is explored and the moti-
vation behind this work is developed. All the utilized methods,
along with the monitored installation are defined in Section 3.
The main contributions are presented in Section 4, with the analy-
sis of the results and the recommendations for energy yield
modeling.

2. Motivation

Current state-of-the-art PV energy production models can be
categorized based on their intended usage as well as the imple-
mented method. In the first case, models intended for operational
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planning or energy trading are based on parametric equations and
black-box fitting tools. The temporal resolution of these models
ranges from hourly to daily, therefore no dynamic effects are incor-
porated. Examples of such models can be identified in commercial
software (e.g. PVSyst) and established open-source models (King
et al., 2004). The power of these models is the speed in which they
can produce fairly accurate energy production results for a given
installation, given the right input. But as the PV sector expands
from utility scale installations to building integrated photovoltaics
(BIPV), smart grid interactions with detailed forecasting and
advanced energy storage systems, the need for models that can
operate on a large range of spatial and temporal resolutions is
becoming more prevalent.

A major challenge lies in the thermal dynamics of the PV mod-
ule, which are considered by the aforementioned class of models to
be in a steady state for the purposes of hourly simulations. But as
the time resolution approaches minutely or even sub-minutely
scales, the dynamics of the system and therefore the calculation
of the correct operating temperature become non-trivial, as
already presented in (Goverde et al., 2015a). Therefore a different
class of models has started to gain research interest; dynamic PV
models (Bizzarri et al., 2013; Torres-Lobera and Valkealahti,
2014; Alam et al., 2015; Chopde et al., 2016). These models utilize
either equivalent RC networks or state-space equations to repre-
sent the thermal properties of the module. Mostly based on previ-
ous works from (Tina, 2010; Armstrong and Hurley, 2010) these
works fail to present models that can accurately traverse the
temporal-spatial necessities of recent applications, usually stop-
ping at a time resolutions of 15 min.

In contrast, this work presents the cross-validation of a coupled
optical-thermo-electrical PV model versus several of the aforemen-
tioned models and outdoor measurements from a monitored
installation. The term cross-validation is used in this work to
describe the process of validating each model separately and then
in comparison with the rest, therefore it should not be mistaken for
the statistical term describing validation through re-sampling. The
proposed model is fully dynamic and scalable, being suitable for
simulations of a single module with a cell detail (Anagnostos
et al., 2014; Goverde et al., 2015a), to even medium-size installa-
tions with many strings (Anagnostos et al., 2016). This analysis
enables the recognition of the sources of errors for each class of
models as well as providing solutions to mitigate these
inaccuracies.

In conjunction with the produced results, additional models are
trained based on neural networks. Information from the electro-
thermal model is used in order to optimize the networks and
achieve significant improvements in accuracy.

Summarizing the main contributions of this work, these are:

� Extensive cross-validation of different energy yield estimation
models, including a novel dynamic model.

� Identification of the main sources of inaccuracy in the modeling
process and ways to mitigate them.

� Development of Neural Network models with insights from the
dynamic modeling in order to improve their performance.

� Exploration of a hybrid scheme for Neural Networks with uti-
lization of relevant thermal information with the purpose of
simplifying the training purpose while preserving accuracy.

3. Validation method description

This work incorporates several different models, as well as val-
idation of the simulations with a monitored installation. The pur-
pose of this section is to provide all the relevant details about
the installation and the models used for the cross-validation.

3.1. Installation

A test-site has been operational on the rooftop of the University
of Oldenburg, Germany since February 2014 with minimal inter-
ruptions, under the supervision of the Solar Energy Meteorology
lab.1 Environmental data is recorded with a frequency of 1 Hz
through dedicated data loggers and stored in a server. Irradiation
(global, diffuse, POA) is measured with Kipp & Zonen CM11 pyra-
nometers, while a weather station next to the installation logs ambi-
ent temperature and wind speed and direction at 10 m above
ground. The monitored module is a BP Solar 7180S 180 Wp module
(Fig. 1), connected to a MPPT 3000 tracker (Chianese et al., 2008)
with a resistive load, installed at 45� due South. The tracker logs volt-
age and current also at a 1 Hz frequency with a 2% relative accuracy.
The temperature at the back surface of the module is measured by
PT100 sensors at three different locations (center and top corners).
All monitoring activity follows a best practice guide (Richter et al.,
2015) in order to ensure the quality of the logged information.

The data used in this work corresponds to the period of April to
October 2014, with only 4 days removed due to logging problems.
The average POA irradiation during this period is 400 W/m2, the
average ambient temperature 18 �C and the average wind speed
1.2 m/s. However, big extremes can be observed in the dataset
due to the variability of cloud coverage.

This period is chosen for two main reasons: First, production in
that specific location is minimal in the months around winter so
conclusions are difficult to reach when comparing the models. Sec-
ond, the selected days cannot be extended to years since the
machine learning techniques that are used would consume
extreme computational resources when pushed to time resolutions
of some seconds. Nonetheless the selected period has an average
specific daily yield of 3.22 kW h/kWp and includes highly varying
conditions, from clear sky days to days with broken clouds and
high irradiation values to even overcast days.

3.2. Electro-thermal dynamic model

In this class, we will use the IMEC model as described in
(Anagnostos et al., 2014; Goverde et al., 2015a, 2015b, 2017). This
PV model is illustrated in Fig. 2 and it incorporates both the
optical-thermal-electrical and spatial properties of a PV module
and the relevant temporal dynamic effects. The model is con-
structed by coupling two (electrical and thermal) equivalent cir-
cuits, one describing the electrical part and one circuit for the
thermal part of the PV module. The parameters of the optical, ther-
mal and electrical parts of the model are determined from experi-
mental data and from FEM models (Goverde et al., 2015a, 2015b,
2017).

The electrical model consists of an equivalent one-diode model,
including the shunt and series resistances, with all the parameters
extracted from either the datasheet or flash tests of the module
under study. The thermal model encapsulates all effects of heat
exchange to and from the environment, as well as internally in
the module in all directions. Novel methodologies have been devel-
oped specifically to describe force convection at the surface of the
module.

It is worth noting that the thermal model makes use of physical
parameters, so all coefficients have a physical meaning and signif-
icance. So this allows not only interpolation but also extrapolation
of yield trends outside the calibrated parametric ranges. Therefore,
what-if analysis of different module technologies and materials is
strongly enabled as it requires no additional measurements and

1 http://www.uni-oldenburg.de/physik/forschung/ehf/energiemeteorologie/ak-
tuelle-messungen/.
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