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In solar engineering, we encounter big time series data such as the satellite-derived irradiance data and
string-level measurements from a utility-scale photovoltaic (PV) system. While storing and hosting big
data are certainly possible using today’s data storage technology, it is challenging to effectively and effi-
ciently visualize and analyze the data. We consider a data analytics algorithm to mitigate some of these
challenges in this work. The algorithm computes a set of generic and/or application-specific features to
characterize the time series, and subsequently uses principal component analysis to project these fea-
tures onto a two-dimensional space. As each time series can be represented by features, it can be treated
as a single data point in the feature space, allowing many operations to become more amenable. Three
applications are discussed within the overall framework, namely (1) the PV system type identification,
(2) monitoring network design, and (3) anomalous string detection. The proposed framework can be
easily translated to many other solar engineer applications.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many solar engineering datasets, such as high-resolution
satellite-derived irradiance data (e.g., Nikitidou et al., 2015), power
output data from hundreds of photovoltaic (PV) plants in an area
(e.g., Yang et al., 2017) and module-level measurements from a
PV plant (e.g., Guerriero et al., 2016), align well with the HACE the-
orem' proposed by Wu et al. (2014) that characterizes big data. One
of the main challenges of processing these raw datasets is the high
noise and irrelevant information embedded. Moreover, visualization
and analysis through operating directly on the raw datasets can be
ineffective. On this point, the Pareto principle, better-known as the
80/20 rule, commonly applies: researchers and solar engineers often
spend most of their time collecting, cleaning, filtering, reducing and
formatting the data. In this paper, a data analytics algorithm is used
to overcome some of the aforementioned challenges. We will look
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! Big Data starts with large-volume, heterogeneous, autonomous sources with
distributed and decentralized control, and seeks to explore complex and evolving
relationships among data (Wu et al., 2014).
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into a class of applications which involve big time series data, or
more specifically, solar irradiance and other related forms.

A time series is a collection of observations taken sequentially
in time; this definition provides a natural grouping for the data.
Instead of viewing the data points as individual entities, we can
view time series as entities. Once this seemingly trivial statement
is understood, much convenience can be added to data handling
and analytics. Traditionally, to reduce the complexity in time series
data, we often shorten each time series, but preserve the number of
entities. For example, satellite-derived irradiance data can be con-
sidered as time series of lattice processes. As the data usually span
decades, some reduced form, such as a typical meteorological year
(TMY) file, can be useful. Composition of the TMY data typify con-
ditions at a particular site over a longer period of time, i.e., 10-
30 years. For computer simulations of solar energy conversion sys-
tems and building systems to facilitate performance comparisons
of different designs, this type of reduced dataset is sufficient
(Wilcox and Marion, 2008). Our approach of representing raw time
series is similar to the construction of TMY datasets.

The core concept is rather simple: each time series is treated as
an individual entity which can be characterized by a set of generic
or application-specific features. This step dramatically reduces the
dimension of the data, i.e., from hundreds of samples in a time ser-
ies to a few descriptive features. As each time series can now be
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treated as a single data point in the feature space, many operations
become more amenable in that feature space. Furthermore, it is
also easier to visualize big time series data in the feature space
as compared to the traditional time series visualization methods
such as the spaghetti plot and horizon plot, which are informative
but not very scalable. We illustrate these points with a toy
example.

1.1. A toy example

Let us consider the problem of detecting faulty strings using
commonly available data from a PV plant. Suppose we represent
each string-level output current time series with a single feature,
namely the mean value over a period of time, and plot it on the real
line, the faulty string could be detected by locating the outliers in
that one-dimensional feature space, as illustrated in Fig. 1. While
the single feature approach may allow us to detect the faulty
strings, it is difficult to isolate the fault type. The decrease in output
current is a shared observation for several different fault types (see
Table 2 in Chine et al., 2016). If a second feature is added, namely,
the mean output voltage over that period of time, the faulty strings
can now be represented in a two-dimensional space. Since the
voltage of the faulty strings can increase, decrease or remain con-
stant, corresponding to different faults, combining two features
would better identify fault types.

The above idea can immediately be expanded to a feature space
with p dimensions, with the additional features being, e.g., mean
short circuit current, mean open circuit voltage and number of
maximum power points; these features were used in Chine et al.
(2016). Within the narrow premise of this toy example, more fea-
tures imply better isolation of faults. In the ideal case, the
described approach could circumvent the tedious string-by-string
fault check, which often involves complex procedure and flow
chart.

The one-dimensional case displayed in Fig. 1 provides excellent
visualization of multiple time series. It is not difficult to imagine
such plots in a two- or three-dimensional space. When p > 3, the
scatter plot can still be visualized by performing principal compo-
nent analysis (PCA) on the features. PCA uses an orthogonal trans-
formation to convert possibly correlated features to linearly
uncorrelated variables, known as principal components (PCs). As
the first few PCs often contain most variation, it is common to plot
the data points - recall each data point represents a time series in
our case - in a new low-dimensional space constructed by the
directions of the first few PCs. When PCA is considered, its compan-
ion algorithms, such as the k-means clustering, o-hull and high
density region, can be then applied to solve a variety of problems,
and thus make the data analytics algorithm very versatile.

1.2. Applications

We study three applications in this work, namely, (1) PV system
type identification, (2) monitoring network design and (3) anoma-
lous PV string detection. We note that all three applications are
well-studied in the literature (the literature review will distribute
to respective sections), however, the merit of the present work
goes to the new point of view on data handling. In clustering prob-

Faulty string 1

Faulty string 2
i 2 3 4
Avg. current in a PV string [A]

Fig. 1. An illustrative example of PV string fault detection in a one-dimensional
feature space.

lem like the first two applications, the k-means algorithm will be
used together with PCA. Unlike other alternatives, this approach
does not cluster raw point values using a distance metric, rather
it clusters based on global features extracted from each time series.
The third application is in line with the toy example above. A two-
dimensional outlier detection algorithm, the o-hull algorithm, will
be applied to the result of PCA. This is also distinct from most out-
lier detection studies in the literature, where outliers are identified
within one time series or based on statistical rules. Besides the
these applications, there are many other applications that could
potentially benefit from the analytics algorithm. We briefly enu-
merate several other applications in Appendix E.

2. Principal component analysis and biplot

For a centered dataset X, an n x p matrix, where n is the number
of time series (observation, each time series is considered as one
observation) and p is the number of time series features (variable),
PCA computes the most meaningful® basis to re-express X. If Z is the
re-represented data, the above statement can be written as Z = XA,
where A is an p x p matrix and its columns are a set of basis vectors
for representing of columns of X.

PCA assumes all basis vectors are orthonormal. It first selects a
normalized direction in p-dimensional space along which the vari-
ance in X is maximized; this basis vector is denoted as a;. In other
words, we maximize V(a]x), where x is vector of p random vari-
ables (p time series features in this case). Since the maximum will
not be achieved with finite a;, a normalization constraint is
imposed, namely, a{a; = 1. The subsequent direction is again
selected based on the maximum variance criterion, however, due
to the orthonormal assumption, the choice is limited to the direc-
tions that are perpendicular to a,. The procedure continues until p
directions are selected. Thus a; x is defined as the kth sample prin-
cipal components and z = @, x; is the score for the ith observation
on the kth PC.

2.1. Solving PCA with eigendecomposition

As the goal of PCA is to reduce redundancy, it is desired that
each variable co-varies as little as possible with other variables.
In other words, we aim to diagnolize the covariance matrix of
the re-represented data. Let S; be the covariance matrix of Z, i.e.,

1
S7=—72'Z, (1)
we have
Sz =5 (XA) (XA)
=:5A (X' X)A (2)
=L A"(EDE A,

where E is a matrix of eigenvectors of X' X arranged as columns and
D is a diagonal matrix. If we let A = E, the covariance matrix

S; =-1A"(ADA"")A
=L (A'ADA'A) 3)
=-LD
can be diagnolized (note that A~' = A" when A is orthogonal). This
was the goal for PCA. The eigenvectors can be found via eigende-

composition. Alternatively, a more mathematically involved
approach to solve PCA is through singular value decomposition

2 For a detailed discussion on the motivation for PCA, and what should be
considered as “most meaningful”, we refer the readers to Shlens (2003).
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