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a b s t r a c t

Gridded forecasts of solar irradiance are increasingly needed to integrate power into the electric grid
from distributed solar installations and newer large-scale installations that don’t have long records of
observed irradiance. We evaluate different combinations of statistical learning models and aggregations
of weather data from observed sites to identify which combination produces the lowest forecast errors at
independent sites. The evaluation reveals how statistical learning model choice, closeness of fit to train-
ing data, training data aggregation, and interpolation method affect forecasts of clearness index at
Oklahoma Mesonet sites not included in the training data. It shows that the choices of statistical learning
model, interpolation scheme, and loss function have the biggest impacts on performance. Errors tend to
be lower at testing sites with sunnier weather and those that are closer to training sites. All of the statis-
tical learning methods and the NWP model output produce reliable predictions but underestimate the
frequency of cloudiness compared to observations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Solar-based electricity generation and its share of the power
supply have been growing rapidly over the past decade (Shaker
et al., 2016). As solar power achieves higher penetration and
becomes more critical to the electric infrastructure, accurate fore-
casts of solar irradiance and solar power are needed in order to
maintain a balanced electric load under varying weather condi-
tions (Renné, 2014). Current state-of-the-art solar and wind energy
forecast systems combine Numerical Weather Prediction (NWP)
model output with statistical learning models trained on a histor-
ical archive to produce solar irradiance or power output forecasts
with minimal bias (Orwig et al., 2015). This approach is very effec-
tive for sites that have been operating for a long period of time, but
with new utility-scale solar plants coming online more frequently
and distributed solar installations increasingly impacting the mea-
sured load, accurate solar predictions are needed for larger areas

where observing sites either have very short records or are not
available at all (Tuohy et al., 2015).

Generating accurate irradiance predictions at sites without
observations can be accomplished by fusing static and dynamic
data sources together within a statistical learning framework.
The amount of solar irradiance at the surface is primarily driven
by the position of the sun in the sky as well as the amount and type
of aerosols and clouds scattering the sunlight. Obstructions by ter-
rain, buildings, and trees can also impact solar irradiance at lower
sun angles. Solar position can be directly calculated given a loca-
tion and time, and information about terrain and land cover type
is available from high resolution gridded datasets. Cloud cover
and aerosol information can be extracted from NWP model output,
but operational NWPmodels generally do not represent either very
well and may be subject to other systematic biases (Diagne et al.,
2013). Statistical learning models can determine the effects of
cloud cover from other NWP model conditions associated with
observed cloudiness. They can also incorporate information from
data sources unavailable to an NWP model, including climatologi-
cal information and statistics concerning spatial and temporal vari-
ability (McCandless et al., 2015, 2016a,b).

Current operational statistical gridded forecasting systems use
linear bias correction methods to calibrate raw NWP model output
to either observations or analyses, which are a gridded fusion of
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observations and background NWP model output, and then inter-
polate those corrections to a fine grid. The National Weather Ser-
vice Gridded Model Output Statistics (MOS) system (Glahn et al.,
2009) performs linear regression corrections at each observation
site and then uses the Cressman (1959) successive correction
method and an elevation correction to interpolate the site-based
MOS forecasts to a grid. The Australian Bureau of Meteorology,
which has to account for a sparse observation network across most
of the country, performs a bias correction of model output on a
coarse grid and then builds a weighted consensus that is statisti-
cally downscaled to a fine grid (Engel and Ebert, 2012).

The purpose of this paper is to evaluate different statistical
learning models and configurations for gridded solar irradiance
forecasting. The primary hypothesis is that ensemble decision tree
methods produce more accurate gridded solar irradiance forecasts
than linear regression and raw NWP model output. In the pre-
processing stage, the set of input variables, NWP model configura-
tion, and division of training data are investigated. Multiple types
of statistical learning models, as well as different configurations
of those models, are evaluated to determine which parameter
choices impact performance. Finally, different methods for apply-
ing the calibrated statistical learning models to unknown sites
are evaluated based on their forecast errors and the realism of their
forecast distributions. This article is adapted from Chapter 5 in
Gagne (2016).

2. Methods

2.1. Observations

Observed solar irradiance data come from the Oklahoma Mes-
onet (McPherson et al., 2007). The Mesonet reports the 5-min-
averaged global horizontal irradiance (GHI) every 5 min using Li-
Cor LI-200 silicon photodiode-type pyranometers. The instruments
are regularly calibrated and are monitored by both humans and
automated algorithms for quality assurance. Extraterrestrial solar
radiation and solar position angles are calculated using a Python
implementation of the National Renewable Energy Laboratory
(NREL) Solar Position Algorithm (SPA) (Reda and Andreas, 2003)
within the PVLIB Python library (Holmgren et al., 2015). Solar
zenith (hs), elevation, and azimuth angles are calculated every
5 min and are used to estimate the idealized clear-sky irradiance
at the top of the atmosphere Itoa. The clearness index Kt is calcu-
lated from the Mesonet solar irradiance Is as

Kt ¼ Is
Itoa cos hs

: ð1Þ

The 5-min irradiance and clearness index values are then averaged
over the previous hour to determine the hourly-averaged values.
The hourly-averaged Kt is then used as truth for the statistical
learning model experiments. Times without sun or with data
outages are removed from the dataset.

2.2. GRAFS

The gridded statistical learning forecasts are generated using
the research version of the Gridded Atmospheric Forecast System
(GRAFS; Gagne et al., 2015), a community platform for testing dif-
ferent statistical learning systems developed at the National Center
for Atmospheric Research. The statistical learning model experi-
ments are performed with the NOAA National Centers for Environ-
mental Prediction (NCEP) Global Forecast System (GFS) model. The
GFS is a global spectral model run operationally by NCEP four times
a day out to 16 days. The raw GFS model output with approxi-
mately 28 km grid spacing is interpolated onto an approximately

4 km grid that uses uniform latitude and longitude values over
the contiguous United States. The 3-hourly output of the GFS is
interpolated to hourly values by interpolating the clearness index
value and then converting back to solar irradiance to account for
the changes in solar position. Incoming hourly averaged clearness
index and total cloud cover percentage are extracted from 349
GFS model runs initialized at 0000 UTC for the period from 5 June
2015 through 31 May 2016. Forecast hours 14–24 are used for the
analysis. All of the input variables to the statistical learning models
are listed in Table 1.

2.3. Gridded forecast evaluation procedure

Two procedures are evaluated for training statistical learning
models at locations with irradiance observations and applying
them to unobserved locations. For ‘‘Single Site” models, separate
statistical learning models are trained using data from each train-
ing site. Then, predictions are made at each of these sites, and
finally the predictions are interpolated to the testing sites using
the Cressman (1959) successive correction interpolation method.
For each interpolation point f i, a distance-weighted average of
the predictions at the stations with distances dj within a radius
of influence R is computed such that

f i ¼
PJ

jwjf sj
PJ

j¼1wj

;
wj ¼ R2�d2j

R2þd2j
dj < R

wj ¼ 0 dj P R:
ð2Þ

The test sites were initialized with the mean of the predictions at
the training sites, and then four passes were performed with the
Cressman filter with a decrease in radius for each pass to capture
local effects. The 90th, 75th, 50th, and 25th percentiles of distances
among Mesonet sites were used, which corresponds to 4.34, 3.28,
2.23, and 1.42 degrees latitude and longitude, respectively. The
Cressman interpolation method was chosen because the NWS grid-
ded MOS system (Glahn et al., 2009) also uses it for interpolation
from training sites to grid points.

In the ‘‘Multi Site” approach, the data from all training sites are
aggregated and are used to train a single statistical learning model.
This model is then applied at all testing sites using the NWP model
and clear sky model output at that location. This approach requires
training a single statistical model and can thus utilize a larger
training set than the Single Site method. Applying the same model
to all grid points also eliminates discontinuities that may be found
in approaches that use separate statistical learning models for dif-
ferent regions. However, this approach is less able to correct for
local biases and conditions.

Generating calibrated gridded solar irradiance forecasts
requires determining the best estimate of irradiance at unobserved
locations. In order to simulate this condition and still score the dif-
ferent procedures, the set of 120 Oklahoma Mesonet sites are ran-
domly split into training set sites and testing set sites. In addition,
testing days are withheld from the training data to prevent tempo-
ral contamination. Every third day during the training period is
used as a testing day so that both training and testing sets are sam-
pled from the same seasons.

Forecasts from each statistical learning model are evaluated
based on their accuracy, systematic bias, and sharpness (Murphy,
1993). Forecast accuracy is assessed using the mean absolute error
because it is less sensitive to outlier errors than the root mean
squared error. Systematic bias is evaluated through the mean error
and determines if the models tend to over or underforecast clear-
ness index. Sharpness, or the range of forecast values compared
to the range of observations, is assessed by examining the distribu-
tion of forecasts and comparing them with the distribution of
observations.
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