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a b s t r a c t

The temporal variability of the solar resource – which occurs at different time scales – is a major concern
regarding its impact on the grid and photovoltaic (PV) power plants. To handle the increasing penetration
rate of solar energy, grid managers require accurate forecasts of incident solar irradiance. This work dis-
cusses standard and new procedures to assess the quality of solar forecasting models and highlights the
limitations of some widely used metrics in concrete situations. The paper recommends practices for char-
acterizing the quality of a forecast, i.e. a quality control to reject any suspicious data; classifications to
relate each performance criterion to the nature of the solar irradiance variability; and a wide selection
of established and new metrics. In this context, two new metrics are notably proposed in order to obtain
more complete information about the performance of a forecasting method. This article aims to make a
step towards standardizing metrics for solar forecasting by taking into account some of the new metrics
recently presented in the literature.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence of renewable energy resources raises many
questions regarding their operational implementation. The rising
share of wind and solar energy in global electricity production
requires adapting technical means to cope with their uncontrol-
lable nature. Conventional energy sources like fossil and nuclear
have a stable and controllable output power which make them
easily adaptable to electrical grid requirements (Lorenz and
Heinemann, 2012). On the contrary, the weather dependence of
wind and solar energies makes them highly variable in both time
and space. This ‘‘intermittent” nature of solar energy is one of
the main issues that hinder the expansion of its penetration rate
(Rodriguez, 2010). The solution that is generally considered –
and currently under study – is to forecast its production at differ-
ent time scales in order to rebalance global production to match
global consumption. Solar forecasting can also serve load-shifting
methods where electricity storage aims to reduce the mismatch
between peak demand and renewable power supply (Denholm
and Margolis, 2007; International Energy Agency (IEA), 2014;
Kaur et al., 2016; Lorenz and Heinemann, 2012). For these reasons,
in recent years the focus has been on improving the quality of

existing forecasts and developing new ways of extending the range
of forecast horizons. An accurate assessment of forecast perfor-
mance is thereby required to demonstrate improvements of the
resulting forecast.

Some conventional statistical metrics are widely used by the
solar forecasting community because they give an overview of
the global performance of a given forecast. Researchers mostly
use the root mean square error (RMSE) and mean bias error
(MBE) to characterize and validate forecasting methods. However,
interpretations of the scores of these metrics should always be
considered in context. Indeed, these scores depend on various fac-
tors that make inter-site comparison difficult if not impossible, e.g.
spatial and temporal resolution of the data being compared, the
months used in the comparison, the percentage of clear-sky days
in the set of data, etc. In this article, we identify some limitations
of using these metrics and suggest a contextualization of forecast
validation results. In order to complete the partial information pro-
vided by statistical metrics, we describe some recent metrics and
suggest an alternative way of characterizing the quality of a fore-
casting method.

Section 2 describes the methods used in this article. Then, Sec-
tion 3 establishes a list of standard metrics and gives concrete
examples of days on which these kinds of metrics fail to fully
describe the performance of a forecasting method. Section 3 is also
dedicated to presenting two new emerging kinds of metrics, i.e. the
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Temporal Distortion Index (TDI) and ramp metrics. Two metrics
are then proposed with their utilization framework in Section 4,
describing behaviors that are particularly interesting for local
short-term forecasts. The first metric quantifies the temporal align-
ment of the forecast and the second focuses on ramp tracking. Sec-
tion 5 is devoted to the proposed procedure that aims to assess the
quality of a forecasting method, including a quality check, some
classifications and the use of suggested metrics. Finally the analysis
and comments on the results of three reference methods can be
found in Section 6.

2. Reference methods

For the sake of illustration, some solar irradiance forecasting
methods are used here for comparison:

j The persistence method, which is defined for solar forecasting
by:

Îðt þ DtÞ ¼ kcðtÞIclrðt þ DtÞ ð1Þ

where Î corresponds to the forecasted irradiance value, Dt is the
forecast horizon of the persistence, and kc is the clear-sky index,
defined by:

kcðtÞ ¼ IðtÞ
IclrðtÞ ð2Þ

where I denotes a measured value and Iclr is a clear sky model. In
this paper the persistence method uses in-situ 15-min average irra-
diance measurements and the corresponding ESRA (European Solar
Radiation Atlas) clear-sky model. The Linke turbidity required by
this model comes from the worldwide climatological database of
monthly means of Linke turbidity provided by Remund et al.
(2003). A wide variety of clear-sky models are proposed in the liter-
ature and different articles compare their skills (Badescu et al.,
2013; Engerer and Mills, 2015; Gueymard, 2012; Ineichen, 2006;
Inman et al., 2013). For this study, we chose the ESRA model
because it is one of the most commonly used and robust methods
according to these references.

j A Numerical Weather Prediction model from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) called Inte-
grated Forecasting System (IFS) (Morcrette et al., 2008). The
ECMWF forecast is computed daily, at midnight and 12 h UT,
and gives the forecasted values for the next day at a 3-h time
step. In this paper we only use the midnight run providing a
daily forecast. These values are then interpolated at the same
15-min time step as the two other forecasting methods for com-
parison purposes. This interpolation step is a linear one, but
applied to the clearness index (cf. Appendix A).

j A Cloud Motion Vector (CMV) method using satellite-based 15-
min average Surface Solar Irradiance (SSI) estimations. In this
case, the source of satellite-based SSI estimation is the database
HelioClim-3, which provides SSI estimations in near real-time,
every 15 min at 3 km nadir resolution. This database is based
on the Heliosat-2 method applied to images from the visible
bands of the SEVIRI sensor onboard the geostationary meteoro-
logical satellite Meteosat Second Generation (MSG). More
details and references can be found in the article by Blanc
et al. (2011).

These methods – providing a Global Horizontal Irradiance (GHI)
forecast – are applied to two sites in northern France where SPN1
pyranometers (Badosa et al., 2014) are installed to acquire 1-min

irradiance measurements. They are referred to this paper as site
no. 1 and site no. 2.

The three methods presented above exhibit completely differ-
ent a priori behavior in their resulting forecasts:

- The persistence follows the fluctuations of the measurements
but with a systematic delay equal to the forecast horizon.

- The ECMWF forecast is not able to capture the temporal vari-
ability of irradiance with a time scale under 3 h.

- The CMV method can detect changes due to advection from
cloud movements, but does not take into account cloud diffu-
sion, convections and complex movements due to orography.
Various sources of error result from use of this method (uncer-
tainties on SSI estimation of the Heliosat-2 method, errors in
CMV, non-advective movements, etc.), but are more likely to
correspond with time than the persistence model and capture
more rapid changes than ECMWF.

Our aim is not to compare these forecasting methods but to use
them as examples to introduce, illustrate and discuss new criteria
to better characterize forecast results. Notably, the ECMWF fore-
cast, even resampled at 15-min, is not comparable to a 15-min-
ahead CMV forecast, since its forecast horizon varies depending
on the time of day. Nevertheless, the difference in representative-
ness of these two methods on time -and space-scales is of interest
in this paper to clearly illustrate our discussions.

3. Overview of existing metrics for solar forecasting

3.1. Standard metrics

Jolliffe and Stephenson (2012, 2003) proposed three categories
of metrics depending on their use: administrative, scientific and
economic. Although the boundaries of these categories are not
clearly defined and can overlap, the authors point out that each
metric should be related to a specific use. In this section, we focus
on the metrics commonly used in the scientific community to
assess forecast accuracy (Beyer et al., 2009).

In order to assess the quality of forecasting methods, quantita-
tive metrics compare the forecast data with reference data – usu-
ally irradiance or electrical power in-situ measurements. It
should be noted that these ‘‘ground truth data” are subject to
uncertainties.

The following metrics are computed a posteriori to provide sta-
tistical information on the past performance of the assessed
method. First, the most commonly used metric is the Root Mean
Square Error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ð̂Ii � IiÞ

2
r

ð3Þ

where N is the number of data pairs.
Nighttime data obviously offer no relevant information on the

solar forecast and so only daytime data are employed to compute
this metric. The impact of including nighttime values is described
by Hoff et al. (2013). In addition, in-situ measurements are more
subject to error for low solar elevation. As a consequence, a thresh-
old on the solar elevation angle is generally imposed. In this article,
we have chosen only data in which the solar elevation is greater
than 7�, as suggested by Ruiz-Arias et al. (2010).

Relative RMSE corresponds to a normalization by the mean irra-
diance or the installed capacity of the power plant. We recommend
exclusively using the mean irradiance in order to obtain a metric
that is as independent as possible from the technical characteris-
tics of the site under study. Depending on the use of the relative
RMSE, the mean value can be calculated on the whole set of data
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