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A B S T R A C T

Utilities consider having accurate electric load forecasts to be critical to their day-to-day operations. But the
growing penetration of distributed photovoltaic (DPV) solar power production “behind the meter”makes it more
difficult to predict load because it is hard to distinguish between increased solar power generation and decreased
power consumption at a site with installed DPV. This paper describes the development of a “top down” solar
power forecasting system and how it can be integrated with a load forecasting system that incorporates weather
information. Both systems depend on accurate weather forecasts, information regarding the utility variables, and
daily and seasonal factors. The load forecasting system provides day-ahead forecasts having roughly 2% error, on
average, and the solar power forecast is within 5% error. In general, we find that if the load forecasting system
incorporates the same weather and solar predictors as the solar power forecasting system, it implicitly accounts
for DPV generation during periods of stationary solar power deployment, and a separate DPV forecast may not be
necessary. However, for higher penetrations of solar power during times of rapid deployment of additional solar
capacity, it may become important to explicitly incorporate the solar power forecasts to avoid degradation of the
load forecasts. This approach could allow utilities and independent system operators to better deal with rapidly
increasing penetration of DPV generation.

1. Introduction

Forecasting the electric load is of critical importance to utilities and
Independent System Operators (ISOs) for balancing the electric grid
(Feinberg and Genethlion, 2005; Hong, 2014). This balancing occurs on
several time scales: (1) short term (about one hour to a week) for day-
to-day operations, (2) medium range (about one week to a year) for
maintenance and longer planning, and (3) longer term (for planning
beyond a year). Electric load depends on weather, customers’ daily and
weekly usage patterns, and the effects of varying weather conditions on
these patterns. Some of these usage patterns are commercial or in-
dustrial, while others are driven by residential use. The balance be-
tween these factors varies greatly with the climate and land usage of the
region for which the prediction is being made. Predicting electrical load
typically includes examining historical load data along with informa-
tion about past, current, and predicted future weather conditions, in-
cluding temperature, solar insolation, humidity, precipitation, and

wind speed. These quantities impact buildings’ stored heat and their
residents’ usage patterns, particularly those that affect heating, cooling,
and lighting. Accurate load predictions allow utilities to operate more
economically and efficiently by avoiding spot market power purchases
or unnecessary use of expensive spinning reserves.

There are well known methods to predict load. One is to search for
similar days in the past (analogs) and summarize the corresponding
observed loads to use as a prediction. Others use statistical learning
methods, including regression models, time series methods (Almeshaiei
and Soltan, 2011), artificial neural networks (Park et al., 1991; Lee
et al., 1992), support vector machines (Hong 2009), and advanced
approaches that incorporate multiple artificial intelligence methods
(Wang et al., 2012). All of these methods require high quality historical
data on usage patterns and the corresponding meteorological data.

The proliferation of “behind the meter” distributed photovoltaic
(DPV) solar power production is complicating the prediction of electric
load. Because DPV is seldom metered, the production of solar power at
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a residence or commercial building appears to the utility as a decrease
in its load. It is thus difficult to distinguish between decreased electric
usage versus increased solar power production. As the installed capacity
of DPV increases, utilities worry about steep decreases in apparent load
in the morning when the DPV begins to produce more power, and steep
down ramps in the evening as the sun sets, causing solar power pro-
duction to decrease just as evening residential usage rises. California
ISO (CAISO) has widely publicized this problem as a “duck curve” of
net load representing underlying conditions that will become more of a
challenge as DPV increases (Letendre et al., 2014). Hawaiian Electric
Company (HECO) has already reached this challenging level of pro-
duction and are “underwater” at certain times of the day, with negative
net demand, which they refer to as the “Nessie curve.” (Nakafugi,
2016). During times in which solar power may account for a large
fraction of supply, unanticipated changes in DPV due to changing
weather, such as frontal passages or thunderstorms, can have sig-
nificant impact on apparent load.

One way to combat this problem is to provide better situational
awareness in the form of forecasts of DPV and its impact on apparent
load. Recent studies have provided evidence of real savings to rate
payers due to improved solar power forecasting (Brancucci Martinez-
Anido 2016; Haupt et al., 2016a, 2017). There are several ways that this
can be accomplished, which are reviewed by Tuohy et al. (2015) and
Orwig et al. (2014). The first is the “bottom up” approach, which uses
details of the individual installations, including their location, capacity,
tilt, azimuth, etc., to directly predict the production at each DPV in-
stallation and sum those over the region of interest. This methodology
has been used to integrate DPV with load forecasts in California (Hoff,
2016). The second approach is “top down,” in which such detailed in-
stallation information may not be available, but a forecast of irradiance
is provided for a particular region, then transformed to DPV production
based on known installed capacity (Lorenz et al., 2014). This current
study takes the latter approach due to the lack of detailed information
regarding characteristics of individual sites. Thus, we leverage histor-
ical, current, and forecasted weather information; prior and current
solar energy production; and electrical load to provide forecasts of solar
power and determine how it modulates the load forecast. Kaur et al.,
(2016a) discuss the benefits of providing solar power forecasts, al-
lowing a substantially lower requirement for flexibility reserves than
with baseline forecasts of either persistence or smart persistence (al-
lowing changes in solar angle, but persistence in sky condition).

This research is performed in collaboration with Xcel Energy’s Public
Service Company of Colorado (PSCo), which has a rapidly growing DPV
capacity, about 196 MW at the beginning of the study (toward the end of
2013) and rapidly growing with 244 MW installed by year-end 2014. With
a peak load of 6401 MW in 2014, this capacity represents only 3.8% of the
average load over the service area in 2014. This is in addition to the
84 MW of utility-scale solar installed at that time (also rapidly growing),
which is forecast explicitly. The challenge to DPV prediction is the lack of
detailed information about each DPV installation or any detailed data on
its historical solar power production. Thus, we are constrained to use the
“top down” approach to solar power forecasting. We also supply an
electric load forecast and assess the impact of solar power production on
the apparent load. To accomplish this, we address a series of questions:

1. Is the DPV discernible in the Colorado load under current installed
capacity?

2. Can we build an accurate forecast for DPV power generation
without access to installation metadata or historical production in-
formation?

3. How do we assess accuracy of our DPV forecast?
4. If we include the DPV forecast as a component, does it substantially

improve accuracy of the net load forecast?
5. During times of rapid growth in DPV capacity, is it necessary to

include the DPV forecast in the net load forecast to improve its ac-
curacy?

To address these issues, the National Center for Atmospheric
Research (NCAR) developed and tested both load and DPV forecasting
systems. These systems were designed so that they can be coupled to
produce a net load (demand load minus DPV) forecast well suited to
adapt as the penetration of DPV in Colorado grows (Haupt et al., 2016b;
Williams et al., 2014b).

The remainder of the paper describes our data, methodology, con-
struction of the forecast systems, and analysis of results. Section 2
provides a system overview and examines whether Colorado has
reached a capacity of DPV that merits its explicit inclusion in the load
forecast. Multiple types of data are input to the load and DPV fore-
casting systems as detailed in Section 2. Section 3 describes the model
to predict DPV and section 4 describes the load forecasting model. We
examine the impact of the DPV forecast on the net load forecast as the
capacity of DPV grows over time in Section 5. Section 6 summarizes the
work and provides conclusions and recommendations for further re-
search and applications.

2. Load analysis and system overview

As the capacity of DPV grows, it increasingly impacts net load at all
timescales. To address our first question for Xcel Energy’s Colorado
service area, we wish to evaluate whether the current level of DPV
generation is evident as a load cutout. Then, in Section 2.2, we review
the overall architecture of the combined load/DPV prediction system
before describing it in more detail in subsequent sections.

2.1. Load cutout statistical analysis

In order to identify and define the load cutout for PSCo, a statistical
analysis was performed to compare load data between clear and cloudy
days during different seasons. We were looking to see whether the load
is discernably reduced during the sunny periods. Note, however, that
when sunny periods coincide with hot days, the analysis will be con-
founded given the impact of cooling on actual demand.

Using Boulder Airport climate data available from the National
Weather Service (NWS) website, days during 2013 were classified as
either clear or cloudy. The NWS dataset records the daily average sky
cover between sunrise and sunset on a 0–10 scale, where “0” indicates
that no clouds were observed and “10″ means clouds covered the entire
sky for that day. Days in 2013 were selected for which the sky cover
was either “0” (clear) or “5–10” (cloudy); days in the 1–4 range (partly
cloudy) were discarded and not analyzed further for this purpose. Any
day falling in December, January, or February was labeled as “winter”;
in March, April, or May as “spring”; in June, July, or August as
“summer”; and in September, October, or November as “fall”. For each
of these days, the average load during daylight hours was computed.
Each day was also classified as a weekday, a weekend day, or a holiday.

For each season, the distributions of average daily load on clear and
cloudy days were compared. The null hypothesis was that there is no
difference between the distributions of load on clear vs. cloudy days.
This hypothesis was tested using the Mann-Whitney test, a nonpara-
metric test that allows two sets of data to be compared without as-
suming that their values are normally distributed. The test is performed
on ranked data; thus, the average loads in each set were ranked.
Specifically, the smallest value was assigned a rank of 1, the next
smallest a rank of 2, and so on. The Mann-Whitney test compares the
magnitude of the elements in the two sets; if most of the Y’s are greater
than most of the X’s, or vice versa, that would provide evidence against
random mixing, discrediting the null hypothesis. The lower the p-value,
the more statistically significant are the results.

Table 1 summarizes the results of this analysis. The first column
provides the seasons into which the data were stratified; the second lists
whether clear or cloudy days had higher loads; the third provides the
Mann-Whitney test p-values for this ordering of clear and cloudy, where
p-values indicating statistical significance at 5% (two-tailed test) are
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