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A B S T R A C T

The use of solar photovoltaic (PV) power has recently increased in electric distribution grids. However, the
stochastic properties of solar energy, such as intermittency (i.e. the presence of a correlated high frequency of
large fluctuations), can negatively affect power quality and cause grid instabilities, especially in microgrids. In
this study, we differentiate the diffusive and jumpy characteristics of solar power and introduce a stochastic
dynamical jump-diffusion equation to model non-gaussian PV power. Using the obtained dynamical equation,
we generate new synthetic data sets with varying jump rates. Finally, we implement a straightforward filtering
method, i.e. a combination of an inverter and a battery storage system to show the applicability of our proposed
stochastic method.

1. Introduction

Recently, increasing numbers of wind and photovoltaic (PV)
power systems have been deployed in order to reduce carbon di-
oxide emissions and avoid the use of nuclear power. By the end of
2014, for example, PV power had already reached a total installed
capacity of over 178 GW worldwide, which is expected to increase
to between 396 and 540 GW by 2019 (SPE, 2015). Similarly, wind
power had reached a total installed capacity of over 369 GW
worldwide by the end of 2014, and it is expected to increase to
712 GW by 2019 (GWEC, 2015). Though the general availability of
wind and solar energy is high, they can strongly vary depending on
geographic location, meteorological conditions, time of year, and
time of day. Wind and PV power production exhibit intermittent
characteristics (Chakraborty et al., 2008), which present a chal-
lenge for the reliable grid integration of increasing shares of wind
and solar energy, especially in case of decentralized power gen-
eration on the distribution grid level (Beck and Hesse, 2007).

A microgrid is a type of distribution network that can help to in-
tegrate large numbers of decentralized power systems into existing
distribution grids (Beck and Hesse, 2007). It is capable of operating
either in grid-connected or grid-disconnected mode, and can actively
contribute to maintaining voltage and frequency stability of both the
microgrid itself and the higher-level power grid. With microgrids, it
may be possible to reduce the need for transmission system lines and
large power plants in the future design of distributed systems (Peças
Lopes et al., 2007; Hadjsaid et al., 1999; Lee et al., 2009). However,

avoiding disturbances of the higher-level grid when connected, and
upholding microgrid stability when disconnected, both become more
difficult when the shares of renewable energies increase.

In this paper, at first we focus on the variability of PV power,
which could influence the stability of microgrids. This variability is
characterized by pronounced fluctuations on many time scales,
from seasonal variations of the order of months, to weather-induced
variations ranging from days to hours, minutes, and even seconds
(Anvari et al., 2016). Here It is worth noting that because of the
spatio-temporal correlation in PV power, one expects a smoothing
effect in the cumulative power of the total solar filed, as has been
discussed in detail in Remund et al. (2015). However, as a micro-
grid typically covers a relatively small area, PV power fluctuations
from different systems within the grid may be correlated, depending
on the time scale of interest (the longer the time scale, the larger the
correlation). For example, It has been shown in Lohmann et al.
(2016) that 60-s increments of 1 s data begin to be uncorrelated for
distances >1 km in Germany. Thus any PV systems that are closer
than about 1 km (which is the typical size for microgrids) would
ramp up or down in a correlated fashion, which amplifies the ab-
solute magnitude of the ramps.

We use high resolution (i.e. 1 Hz) measured irradiance data in
Hawaii (as an exemplary data) to study the stochastic behaviour of
short-term PV fluctuations, and classify its states as cloudy, sunny and
flickering. Our main aim is the construction of a simple dynamical
equation (jump-diffusion stochastic equation) that governs the sto-
chastic process of PV-fluctuations, so that the statistics of the modelled
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time series are identical to those of the measured ones. The proposed
method has potential for forecasting of the PV-fluctuations, and we will
get back to this issue elsewhere. In the literature, there are some auto-
regressive methods that are proposed to forecast high resolution PV
power (Monjoly et al., 2017; Clack, 2016). These methods are linear in
their approach and can not produce intermittent and jumpy behaviour,
as one observes in measured power or solar irradiance time series.
Furthermore, these methods mostly use meteorological observations,
such as wind speed, cloud height and atmospheric pressure
(Lappalainen and Valkealahti, 2017) to model the dynamics of PV
power. In contrast, in our modelling all functions and parameters of the
dynamics are determined directly from measured data.

Various energy storage systems (ESS) and control strategies to
suppress both the magnitude and frequency of short-term PV fluctua-
tions in a distribution grid have recently been proposed in the litera-
ture. For instance, to mitigate small-scale fluctuations of a few seconds
up to a few hours, flywheels, super- conducting coils, double layer ca-
pacitors and hybrid PV-storage are suggested as suitable ESS (Woyte
et al., 2003; Bullich-Massagué et al., 2017). In addition different control
strategies such as ramp control, moving average and step-rate control
strategy have been discussed in Haaren et al. (2015), Alam et al. (2014),
Salehi and Radibratovic (2014), Marcos et al. (2014), de la Parra et al.
(2015), Beltran and Segundo (2011), and in each case an attempt is
made to minimize the energy storage capacity required. In this work,
we choose a storage converter, i.e. lead-acid battery, in combination
with a PV inverter in order to show the applicability of our suggested
stochastic method for suppressing the strong short-term fluctuations of
PV power.

Indeed, we will show how one can tune a control parameter, for
different jump rate values (which we generate with the jump-diffusion
equation) in order to mitigate the fluctuations. In fact, our introduced
stochastic equation makes it possible to quantify the control parameter
in this study. For this purpose, we install an active distribution grid in
our laboratory, feed it with our modelled flickering-state time series,
and show how to parametrize the control parameter with respect to
stochastic properties to suppress short-term fluctuations.

The rest of the paper is organized as follows. In Section 2, we pro-
vide details on the irradiance data and its conversion to clear-sky index
(which is irradiance normalized to cloud-free conditions), classify dif-
ferent fluctuation regimes, introduce the nonparametric estimation of
Langevin and jump-diffusion equations, and determine all model
parameters from the clear-sky index time series. Section 3 is devoted to
the reconstruction of clear-sky index and solar power time series, so
that we can generate many high resolution samples with similar sta-
tistical properties. In Section 4, we simulate an exemplary control
system and compare the results of the simulation with those of the la-
boratory grid, using the previously generated PV power time series as
input. The paper is summarized in Section 5.

2. Modelling stochastic power feed-in from photovoltaics

2.1. Global horizontal irradiance in Hawaii

In this paper, we use high resolution irradiance data measured in
Hawaii. The United States’ National Renewable Energy Laboratory
(NREL) performed a one-year measurement campaign at Kalaeloa
Airport (21.312°N, −158.084°W), Hawaii, USA, from March 2010 until
March 2011 using 19 LI-COR LI-200 pyranometers to measure global
irradiance on horizontal and inclined surfaces with a 1 Hz temporal
resolution (Sengupta and Andreas, 2010). Two of the instruments were
tilted with a 45 degree orientation, while the other 17 were horizontally
mounted and scattered across an area of about 750 × 750 m2. From
this publicly available data pool, the subset of global horizontal irra-
diance was selected, processed and checked to yield about 20 million

synchronised values of 1 Hz temporal resolution measured by the
aforementioned 17 pyranometers on 378 days.

Changes in horizontal solar irradiance are not only the result of
stochastic fluctuations but are also governed by deterministic processes.
Therefore a version of irradiance is needed that only exhibits stochastic
changes. The dominating deterministic process influencing global ir-
radiance is the apparent movement of the sun in the sky that accounts
for both diurnal and annual variations of the available solar energy on
the earth’s surface (Lave et al., 2012). Thus, by calculating the clear-sky
irradiance Gclear (i.e. irradiance on earth with cloud-free atmosphere)
for a location, the instantaneous global irradiance G may be converted
to clear-sky index =Z G G/ clear. Clear-sky irradiance Gclear depends on
astronomical relationships and also needs to include parameters of at-
mospheric conditions, such as air composition and turbidity.

For this study, the clear-sky model of Fontoynont et al. (1998) is
used to compute clear-sky irradiance time series for Hawaii. In order to
ensure conservative results, only data associated with solar elevation
angles > °α 10 are processed in the clear-sky index calculation. Other-
wise, the relatively low global irradiance values occurring after sunrise
and before sunset, coupled with path prolongation and corresponding
higher uncertainties in clear-sky calculations at these times, can result
in unrealistic clear-sky index values (Woyte et al., 2007). In this way,
we are able to derive the sets of purely stochastic time series of clear-
sky index from the original irradiance measurements in Hawaii.

2.1.1. The classification of clear-sky index
Detailed study of the clear-sky index Z indicates that there are at least

three different types of fluctuations, associated with cloudy, sunny and
flickering states. For typical examples of time series linked to these condi-
tions see Fig. 1. In the cloudy state Z t( ) fluctuates smoothly around its very
lowmean value∼ 0.06, whereas in the sunny state the mean is about∼ 0.98
and it fluctuates around the mean less smoothly. As shown in this figure, the
data of the flickering state have an on-and-off behaviour, because clouds
cover and uncover the sun within different time intervals.

In the flickering state, the waiting times between two strong jumps can
be analyzed by considering the number of times that the clear-sky index
crosses its mean ( ∼Z 0.7, see the broken line in Fig. 1) (Reza Rahimi et al.,
2014). An average jump rate can then be evaluated as
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where the indicator I O{ } is 1 if its argument is true, and 0 if it is false. This
average jump rate accounts for all crossings of the specific level, here the

Fig. 1. Different stochastic behaviour of solar clear-sky index in cloudy (red), sunny
(blue) and flickering (black) states. The broken line shows the mean value of Z for the
flickering state given by ∼Z 0.7. It is clear that in flickering state, there are times when
the value of Z is bigger than 1. The reason for this is the phenomenon of cloud en-
hancement, which means that sunlight is being reflected by surrounding clouds (see Refs.
Yordanov et al., 2013; Piacentini et al., 2011). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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