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a b s t r a c t

To determine the impact of solar variability to electric grid operations, appropriate samples of solar vari-
ability must be used, but determining appropriate variability samples is difficult for locations without
ground measurements. In this work, we evaluate and model the relationship between high-frequency
and low-frequency solar variability. The developed model is then used to define solar variability zones –
zones of similar high-frequency solar variability – using low-frequency satellite data. A map of the
United States is presented indicating areas of high, moderate, and low solar variability. To demonstrate
the value of the variability zones, quasi-static time series (QSTS) simulations are used to determine the
impact of variability samples from each zone on distribution grid voltage regulator tap change operations
(ameasure of the impact of solar variability to electric grid operations). Strong correlation is found between
satellite-derived variability zone and QSTS simulated tap changes based on ground samples of solar vari-
ability, showing that solar variability zones can be useful to approximate the impacts of high-frequency
solar variability. The relationship between high-frequency and low-frequency variability is found to apply
to timescales as short as 10-s.

Published by Elsevier Ltd.

1. Introduction

The variable power output of solar photovoltaics (PV) can lead
to increased distribution grid operation impacts (Palmintier et al.,
2016). For example, PV variability may lead to additional voltage
regulator tap change operations, necessitating more maintenance
and earlier replacement of these mechanical devices. Previous
work (Lave et al., 2015) has shown that the number of voltage reg-
ulator tap changes can vary by as much as 300% when using solar
variability samples from different locations. However, there are a
limited number of locations with high-frequency irradiance mea-
surements. In this work, we define solar variability zones of similar
sub-minute solar variability and then use them to determine rep-
resentative proxies for distribution grid integration studies.

Solar variability at distribution timescales (30-s and shorter)
has been quantified at specific locations previously. Woyte et al.
(2007) used up to 1-s irradiance measurements in Germany and

Belgium to quantify the variability at various timescales using a
wavelet transform. Perez et al. (2012) used the 20-s measured irra-
diance data from 17 sensors in the ARM network located in north-
ern Oklahoma and southern Kansas to show the difference
between high-frequency (20-s) and low-frequency (15-min) vari-
ability, and to determine station-pair correlations. Hinkelman
(2013) used 1-s measured irradiance data from a network of 17
pyranometers in Oahu, Hawaii to determine the solar ramp rates,
with a special focus on the correlation of ramp rates between dif-
ferent pyranometers. Lave et al. (2015) compared both the variabil-
ity score and the impact to voltage regulator operations of 30-s or
better irradiance samples from ten locations across the United
States. Gagn et al. (2016) characterized sub-second solar variability
at two locations in Eastern Canada.

Understanding the solar variability at a few select locations,
though, is not helpful to understanding the impact of PV at distri-
bution grids that are not located near one of these known locations.
To synthesize high-frequency data, some studies have taken
widely available low-frequency data and downscaled it to repre-
sent high-frequency data. Wegener et al. (2012) downscaled 15-
min PV system data from California to 1-s data using wavelet-
based hidden Markov models. Hansen et al. (2011) created a
library of measured 1-min irradiance data from the Las Vegas,
Nevada region, and used this data to downscale 1-h satellite irradi-
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ance from nearby areas. The satellite values were used to pick
which 1-min segments to sample from the library. In this way,
all downscaled data was actual measured data (from a nearby loca-
tion), but rearranged to match the satellite data at the location of
interest. Hummon et al. (2012) found links between 1-min mea-
sured irradiance data at 7 locations in California, Nevada, and Ari-
zona and the 1-h satellite irradiance data around those locations,
and used these links to determine classes of variability. Downscal-
ing of 1-h satellite data to 1-min was achieved by synthesizing data
that fit into the class defined by the local satellite data. This
method was later extended to downscale from 1-h satellite data
to 4-s data using a similar method (Hummon et al., 2013).
Watanabe et al. (2016) characterized variability in surface solar
irradiance using cloud properties derived from satellite observa-
tions. Huang and Davy (2016) attempted to derive sub-hourly solar
variability from hourly solar forecasts.

However, it is not clear that these downscaling methods will be
accurate for distribution-scale applications. Wegener et al. (2012)
was compared to measured high-frequency data, but had signifi-
cant errors in matching the cumulative distributions of short-
timescale ramp rates (Fig. 4 in Wegener et al. (2012)). The other
methods either were meant for transmission-scale applications
and so did not downscale to shorter than 1-min (Hansen et al.,
2011; Hummon et al., 2012; Watanabe et al., 2016; Huang and
Davy, 2016), or have not been validated against measured data
(Hummon et al., 2013).

In this work, we produce appropriate high-frequency solar
inputs for distribution studies by using a combination of 1-h
satellite-derived irradiance and ground-measured 30-s or better
solar irradiance datasets. Our approach is different from other
works as we do not attempt to downscale the 1-h satellite data
but instead use it to define zones of similar variability. Using these
variability zones, ground measurements at high-frequency col-
lected anywhere within the zone are considered representative of
the high-frequency variability of all locations within the zone. In
this way, at locations across the United States, we will be able to
produce a representative solar input that does not have any syn-
thetic data, but still accounts for local high-frequency variability.

2. Data

Two data sets were used for this work: satellite-derived irradi-
ance data for creation of the variability zones and ground measure-
ments of irradiance for validation.

Satellite-derived irradiance was obtained from the National
Solar Radiation Database (NSRDB) 1991–2010 update (Wilcox,
2012). Specifically, we used the gridded data which reports global
horizontal irradiance across a 0.1 by 0.1 grid (roughly 10 km by
10 km) at 1-h intervals for years 1998 through 2009. The NSRDB
grid covers the entire continental United States, plus Hawaii. It
does not cover Puerto Rico. NSRDB coverage is shown in Fig. 1.

We used the nine ground measurements of global horizontal
irradiance (GHI) described in Lave et al. (2015) which overlap the
NSRDB: Albuquerque, NM (x2); Boise, ID; Lanai, HI; Las Vegas,
NV; Livermore, CA; Oahu, HI; Sacramento, CA; and San Diego, CA.
These locations are plotted in Fig. 1, and details of the time periods
used and temporal resolution are listed in Table 1. All ground mea-
surements were collected at 30-s or better resolution, and were
available for at least 11 months, so should capture seasonal trends.
Additional high-frequency irradiance measurements at various
tilts (i.e., latitude tilt at various locations) were not considered in
this analysis since the differing tilt angles would complicate vari-
ability comparisons between locations. Lower frequency (1-min
or worse) data were also not considered in this study as our intent
was to examine high-frequency data most relevant to distribution

grid operations, such as voltage regulator tap changers which have
time constants of less than 1-min. Previous work (Lave et al., 2016,)
has shown the importance of high-frequency data to accurate dis-
tribution grid simulations, though the importance of high-
frequency data also depends on the amount of variability (as seen
in Fig. 13 in Lave et al. (2015)) – high-frequency data is most
important in highly variable areas.

3. Ground data: high vs. low frequency variability

For variability zones derived from low-frequency satellite data
to be valid at representing high-frequency solar variability, there
must be a relationship between high and low frequency solar vari-
ability. To explore this relationship, the ground measurements
were used. Since the ground measurements were recorded at var-
ious intervals ranging from 1-s resolution to 30-s resolution, they
were all averaged to 30-s resolution for consistency. To simulate
lower frequency data (e.g., 1-h resolution), additional temporal
averaging was applied.

3.1. Variability score

The variability score from ramp rate distribution (VSRRdist) is a
simple-to-calculate metric to quantify solar variability. The vari-
ability score (Lave et al., 2015) is defined as:

VSRRdistðDtÞ ¼ 100� max
0�RR0�maxðRRDtÞ

½RR0 � PðjRRDt j > RR0Þ�: ð1Þ

where Dt is the timescale considered and RRDt is each measured
ramp in the timeseries considered (e.g., GHI timeseries). RR0 and
PðjRRDtj > RR0Þ are both expressed as percentages, the former as a
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Fig. 1. NSRDB coverage area (yellow) and ground measurement locations (black
dots). Gridlines are set at 1� longitude by 1� latitude, such that 100 satellite pixels
would be contained in each displayed grid cell. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Ground-measured high-frequency data.

Location Data Used Time Res.

Albuquerque, NM (PSEL) 2/2013–12/2013 3 s
Albuquerque, NM (Mesa) 2/2013–12/2013 1 s
Boise, ID 5/2013–4/2014 10 s
Lanai, HI 2/2010–12/2010 1 s
Las Vegas, NV 1/2010–12/2010 1 s
Livermore, CA 12/2013–11/2014 2 s
Oahu, HI 3/2010–2/2011 1 s
Sacramento, CA 1/2012–12/2012 30 s
San Diego, CA 1/2011–12/2011 1 s
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