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a b s t r a c t

This paper proposes a novel short-term forecasting method for purchased photovoltaic (PV) generation.
The proposed method is used to solve emerging problems, such as low accuracy of electricity load fore-
casting, which are associated with the rapid increase in PV generation. In the present study, hourly PV
power is first modeled in the form of state-space models (SSMs), which incorporate a local power model
and PV system parameters. Hourly installed PV capacities are then estimated using data that are available
on a monthly basis. Finally, using the hourly capacities and weather observations, data assimilation in the
SSMs is performed by an ensemble Kalman filter. As a result, the hourly physics-based PV power models
are enhanced by monthly PV purchase volumes and significantly outperform an existing operational
model. Furthermore, it is possible to simultaneously estimate PV system parameters, such as the coeffi-
cient of PV conversion, in the data-assimilation process.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since 2012, electric utilities in Japan have been obligated to pur-
chase excess renewable energies at a fixed price, through a
government-guaranteed period. Subsequently, the installed capac-
ity of photovoltaic (PV) generation has increased rapidly. Com-
pared with other renewable energies, the Feed-in-Tariff (FIT) rate
for PV systems is relatively high (e.g., ¥42/kW h for 20 years). In
addition, the installment costs and environmental requirements
for the system have been comparatively low. These advantages
have led to a boom in investment in PV systems.

The large variability of PV power generation that depends on
weather necessitates short-term PV power forecasting in order to
maintain the supply-demand balance in the power system. This
balance is maintained by system operators through short-term
electricity load forecasting. For example, operations of pumped-
up hydroelectric and thermal power plants are scheduled two
weeks and two days in advance, respectively, according to load
forecasts. The uses and importance of short-term PV forecasting
is clearly summarized by Wan et al. (2015). However, the difficulty
involved in hourly PV power estimation lowers the accuracy of
load forecasting. This problem is described in detail as follows.
Fig. 1 shows the relationship between electricity load and PV

power. PV self-consumption, which is power consumption within
houses or firms of PV suppliers, is shown above the load curve indi-
cated by the thick black line. Although PV self-consumption is not
part of the load, it decreases and the load curve increases to com-
pensate for the shortfall when the weather changes from clear to
cloudy or rainy. The remainder of the PV power, more than 85%
of the total PV power generated, is sold to a utility as a power
source; this is shown as the area immediately below the load
curve. Thus, both sold and self-consumed PV power affects utilities,
and due to the influence of weather, PV power is a virtually uncon-
trollable power source. Since the target of load forecasting is a load
that contains such PV power, it is important to accurately forecast
PV power generation on an hourly or semi-hourly basis. Hourly PV
power forecasting is not an easy task for major utilities, especially
those without a remote monitoring system for power-
consumption (also referred to as a smart-meter system1). The dif-
ficulty in proper forecasting is that utilities without a smart-
metering system cannot measure the hourly PV power generation
which inflows to the power grid. Instead, only reported monthly
PV purchase volumes and hourly weather information are available
(observational and two-week forecast). Therefore, we must estimate
hourly PV power generation based on these data. Major utilities in
Japan have used physics-based models for PV forecasting. Since
these models do not have a process of model-fitting to observational
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data, a severe systematic bias problem occurs and it directly leads to
a large imbalance penalty.2

In the following, we present an overview of PV forecasting tech-
nology. Some studies have reported successful removal of system-
atic bias of satellite-derived solar irradiance using short-term
ground measurement (Polo et al., 2015).

Satellite images with cloud motion are commonly used for
short-term (within several hours) forecasting (Coimbra et al.,
2013), whereas physics-based models are usually used for longer-
term (more than six hours) forecasting. Most PV forecasting tech-
niques preliminarily predict solar irradiance using widely available
numerical weather prediction (NWP) techniques (Kaur et al., 2016);
the results are then used for one-day forecasts (Larson et al., 2016).
For forecasting for periods of more than one year, the classical sea-
sonal decomposition model is used to decompose time series data
into seasonal components, trend components, and irregular compo-
nents (Phinikarides et al., 2015). As an example, the Kalman filter
has been successfully used to remove the systematic bias of solar
irradiance forecasts (Barkhouse et al., 2012).

We herein focus on short-term forecasting, which is our pri-
mary interest. Artificial intelligence (AI) methods, such as artificial
neural networks (ANNs), has been most commonly used in hourly
PV forecasting. For example, several ANNs with distinct topologies
have been used for PV forecasting, and two solar modules pro-
duced by major manufactures have been tested (Brano et al.,
2014). A recurrent neural network has been successfully applied
to several hour-ahead PV power forecasting techniques (Yona
et al., 2013). For other AI methods, hybrid hourly forecasting using
a genetic algorithm to combine the Box-Jenkins autoregressive
integrated moving average (ARIMA) and three artificial intelligence
methods has been proposed (Yuan-Kang et al., 2014). The hybrid
model uses only solar radiation and empirical PV hourly power
data. Inman et al. (2013) extensively reviewed existing solar fore-
casting methods and compared performance of global horizontal
irradiance (GHI) forecasting techniques with NWP-based forecast,
stochastic forecasts, ANNs, and hybrid forecasting models (ARIMA
and ANN). Of all these methods, it is indicated that ANNs can be an
alternative approach to physical modeling since the techniques are
successfully applied to intra-hour and yearly forecasting. The
authors also mentioned the merit of using hybrid methods over
traditional approaches. Note that some studies have used actual
hourly PV power data as training data. However, these studies con-
sidered only a small amount of aggregated power from experimen-
tal residential areas or from a few PV firms; this is in contrast to the
present study, which considers the total PV power for an entire
utility service area.

Forecasting methods which do not require knowledge of PV sys-
tems are gaining popularity. The hourly quantile regressionmodel is
used for one-day forecasting (Almeidaet al., 2015). Forecasting tech-
niques that do not consider solar radiation have been accessed, and
ANNs have been demonstrated to outperform ARIMA and k-nearest
neighbors algorithms (kNN) (Pedro and Coimbra, 2012). A refore-
casting technique for removing systematic bias has also been devel-
oped (Chu et al., 2015b). Support vectormachines based onweather
pattern recognition (Wang et al., 2015) and regularized linear/non-
linearmodels (Aggarwal and Saini, 2014) have also been developed.

Two basic types of strategies are usually used for PV forecasting
of total power: bottom-up strategies, which aggregate locally fore-
casted PV power generation, and direct strategies, which directly
forecast the total PV power generation (Zamo et al., 2014). The
mean absolute error (MAE) has been reported to be reduced by

more than 3% by using a bottom-up strategy, as compared to a
direct strategy. In addition to this accuracy advantage, only the
bottom-up strategy is capable of providing precise information
regarding local PV power, which would contribute to solving
over-voltage problems that occur in power distribution networks.
Therefore, we adopted a bottom-up strategy; that is, we first fore-
cast local PV power generation, followed by total PV power.

The most popular ANNs provide a possible means by which to
avoid the severe systematic bias problem that occurs in utilities.
Although they may fit a nonlinear model to observations very well,
ANNs are a black-box approach, and so no reasonable interpreta-
tion will be provided for the forecasting results. Therefore, ANNs
are not the best choice for a bottom-up approach. Instead, we
focused on a data-assimilation technique. Data assimilation incor-
porates observed data into a simulation model in order to provide
better model behavior. The technique is widely acknowledged to
be one of the most effective ways of simulating natural phenom-
ena, such as weather, for cases in which related observed data
are available. Data assimilation compensates for the weak points
of both physics-based and black-box approaches by incorporating
observed data into a physics-based model.

The best-known data-assimilation technique (e.g., Pedregal and
Trapero, 2010) is the Kalman filter (KF) (Kalman, 1960), although it
has a high computational cost derived from full calculation of
covariance matrices and is incapable of implementing nonlinear
system dynamics (Tippett et al., 2003). Evensen (initial study
Evensen, 1994; comprehensive study Evensen, 2003) developed
the ensemble Kalman filter (EnKF), which overcame both problems
by adopting a Monte Carlo approximation in the KF. The EnKF con-
sists of a linear observation model with Gaussian noise and a linear
or nonlinear system model with any type of noise distribution. The
EnKF and the four-dimensional variational data-assimilation algo-
rithm (4D-Var) have become the most widely used algorithms for
data assimilation of weather phenomena. Although PV generation
is very closely related to the weather, surprisingly few studies have
examined PV forecasting using either the EnKF or the 4D-Var. We
applied the EnKF to PV power forecasting and demonstrated its
effectiveness for the first time. The EnKF has several variants. The
EnKF with perturbed observations (EnKFPO) was the first variant
to be introduced and is widely used in many practical applications.
However, perturbed observations increase the forecasting error to
some extent. In order to reduce this error, the ensemble Kalman
square-root filter (EnSRF) was developed (Whitaker and Hamill,
2002). The ensemble transform KF (Bishop et al., 2001) and the
ensemble adjustment KF (Anderson, 2001) are similar. In the pre-
sent study, we use the EnSRF, since it is easily implemented and
performs better than the EnKFPO. We will use the term ‘‘EnKF”
to refer to the EnSRF in this study.

Using EnKF, which can deal with a nonlinear model, it becomes
possible to easily enhance an elaborate physics-based model by
incorporating observed data. Moreover, it is very easy to add uncer-
tainty information, such as quantiles, to the point estimate, since
ensemble members obtained by EnKF represent a prediction distri-
bution. Although most existing forecasting methods provide only
point estimates (Espinar et al., 2010), some successful results using
non-point forecasts have recently been reported; for example, Chu
et al. (2015a) proposed a real-time direct-normal-irradiance fore-
casting model with prediction intervals. The proposed model
achieved high coverage probability in ramp time. Also, non-point
forecasts using ANNs, ARMA and kNN were used for forecasting
PV power generation (Chu et al., 2015b). For unit commitment for
thermal plants, utilities use the forecasted load curve, which fluctu-
ates with PV power. Therefore, interval estimation of PV power is
more useful than point estimates for system operators.

In view of the above-mentioned advantages, we adopted SSMs
with EnKF as an hourly PV forecasting model. We demonstrated

2 Imbalance penalties of 53.21 ¥/kW h (summer), 47.03 ¥/kW h (other seasons),
and 28.84 ¥/kW h (at night) for forecasting errors greater than 3%, and 15.44 ¥/kW h
for forecasting errors within 3%. (http://www.tepco.co.jp/corporateinfo/provide/
engineering/wsc/yakkan2604-j.pdf).
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