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a b s t r a c t

We investigate short-term non-linearity of solar irradiance fluctuations using the multifractal detrended
fluctuation analysis (MFDFA). The MFDFA shows that time series of solar irradiance have a long range cor-
relation function with a multifractal behavior. We apply this method to solar irradiance time series from
several regions around the world with resolutions of seconds and minutes. The obtained generalized
Hurst and Renyi exponents hðqÞ and sðqÞ suggest the non-linear and non-stationary essence of measured
irradiance time series. Also, we analyze shuffled, random phase, and rank-wised surrogated data to reveal
the nature of the multifractality and conclude that linear and non-linear correlations are the dominant
contributions to observed multifractal and non-linear behavior of solar irradiance.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The share of renewable wind and solar photovoltaic (PV) power
in electricity production has constantly increased and is expected
to grow further. For example, the European Union plans to
generate 20% of its required electrical energy from renewables
by 2020, and 60% by 2050 Schavan (2010). Recent studies on wind
and solar power systems have shown that they feature strong
fluctuations on different time scales, with the complexity of
weather causing short-time non-Gaussian statistics in the power
output of these renewable sources, see Anvari et al. (2016). These
fluctuations have been characterized by Kolmogorov-like power
spectra as well as q-exponential probability density functions,
Anvari et al. (2016) and Rahimi Tabar et al. (2014). They complicate
electrical grid operation and may endanger grid stability, Milan
et al. (2013). Understanding their stochastic properties is therefore
necessary for designing future power grids. It will also help to
control and reduce dynamic power grid instabilities caused by
renewable power production, Anvari et al. (2016) and Woyte
et al. (2007).

In complex time series, two-point long-range correlations are
usually characterized by scaling laws, where the scaling exponents
classify the underling processes. According to the Wiener-Khinchin
theorem, the two-point correlation function hxðt þ sÞ � xðtÞi is
directly related to the power spectrum by a Fourier transform.

The correlation function is the linear regression in the
ðxðt þ sÞ; xðtÞÞ plane, and it is therefore known as a linear quantity
in the characterization of a given time series. There is a possibility
that two completely different time series share a similar two-point
correlation structure, but with different higher order stochastic
properties. Therefore we need to analyze higher order (non-
linear) statistical properties to fully characterize a given complex
time series.

Let fxðtÞg be a given time series and consider its increment over
a certain time scale s, which is defined as DxðsÞ ¼ xðt þ sÞ � xðtÞ.
We denote Sðq; sÞ as the qth order absolute moment of xðtÞ:
Sðq; sÞ ¼ hjDxðsÞjqi: ð1Þ
The process is called scale invariant if the scaling behavior of the
absolute moment Sðq; sÞ (i.e. structure function) has a power law
behavior in a certain range of s, Friedrich et al. (2011). Let us call
nq the exponent of the power law, i.e

Sðq; sÞ ’ Cqsnq ð2Þ
where Cq is a prefactor. Sðq; sÞ is calledmonofractal (or linear) if nq is
a linear function of q, and multifractal (non-linear) if nq is non-linear
with respect to q. Multifractality has been introduced in the context
of fully developed turbulence in order to describe the spatial fluctu-
ations of the fluid velocity at very high Reynolds number, Peng et al.
(1994). Note that this formalism may not give correct results for
non-stationary time series that are affected by trends or cannot
be normalized.

The simplest type of multifractal analysis (to assess linearity
and non-linearity of a time series) is based on the partition
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function multifractal formalism, Feder (1988), Barabasi and Vicsek
(1991), Peitgen et al. (1992), and Bacry et al. (2001). An improved
multifractal formalism called the wavelet transform modulus
maxima (WTMM) method, Muzy et al. (1991) involves tracing
the maxima lines in the continuous wavelet transform over all
scales. The multifractal detrended fluctuation analysis (MF-DFA)
is a third method based on the identification of scaling of the qth
order moments depending on the signal length. Often experimen-
tal data are affected by non-stationarities (e.g. trends), which have
to be well distinguished from the intrinsic fluctuations of the
system in order to find the correct scaling behavior of the fluctua-
tions, Feder (1988), Barabasi and Vicsek (1991), Peitgen et al.
(1992), Bacry et al. (2001), and Muzy et al. (1991). Fractal and
multifractal analyses are widely used in social and natural
sciences, Mandelbrot (1983), for instance to characterize weather
conditions, Koscielny-Bunde et al. (1998), Ivanova and Ausloos
(1999), and Talkner and Weber (2000), cloud shapes, Ivanova
et al. (2000), geophysics, Malamud and Turcotte (1999), DNA
sequences, Peng et al. (1994), Ossadnik et al. (1994), and
Buldyrev et al. (1998), neuron spikes, Blesic et al. (1999) and
Bahar et al. (2001), medical, physiological, and astrophysical time
series, Kantelhardt (2011), as well as economic time series,
Mantegna and Stanley (2000) and Liu et al. (1999).

In this paper, we address the non-linear character of solar irra-
diance and clear-sky index time series (i.e. irradiance normalized
to clear-sky conditions) by means of the multifractal detrended
fluctuation analysis (MF-DFA) using data from several regions
around the world with temporal resolutions of seconds and min-
utes. We obtain the generalized Hurst and Renyi exponents hðqÞ
and sðqÞ and show that solar irradiance time series have strong
non-linear and non-stationary properties.

The paper is organized as follows. Section 2 describes and intro-
duces the solar irradiance datasets used throughout the analyses.
In Section 3, we provide a brief review of detrended fluctuation
analysis (DFA) and MF-DFA methods to study scaling and multi-
fractality of time series. MF-DFA results based on random-phase
(RP) and rank-wised (RW) surrogated data are also given in this
section. In Section 4, we present our results of analyzing data to
probe the multifractal behavior of solar irradiance and clear-sky
index and compare it to the MF-DFA results for shuffled and surro-
gated data sets. Section 5 contains the conclusions.

2. Description of solar irradiance data sets

Our analyses are based on large solar irradiance data sets from
several countries, as summarized in Table 1. The first data set has
been recorded in Hawaii using 17 horizontally oriented LI-COR LI-
200 pyranometers distributed across an area of about 750 � 750 m2

and operating at 1 Hz between March 2010 and March 2011,
Sengupta and Andreas (2010). We use both single-sensor data as
well as the average of all sensors.

Also, we derive minute-averages of the single-sensor 1 Hz mea-
surements, and use another three single-sensor data sets with the
temporal resolution of minutes. Two of these data sets originate

from the global Baseline Surface Radiation Network (BSRN) BSRN
(2016). They were collected in northern Spain between July 2009
and February 2013, and in Algeria (Sahara) between March 2000
and December 2013. The third minute-averaged set was recorded
on the roof of the University of Oldenburg, Germany, using small
(0:242� 0:556 m2) PV modules. It was presented in Beyer et al.
(1994), and we use single-panel measurements.

Additionally, we use estimated clear-sky irradiance Iclearsky, i.e.
global horizontal irradiance under a completely cloud-free atmo-
sphere, to detrend the measured irradiance I by deriving the
clear-sky index

k� ¼ I
Iclearsky

: ð3Þ

There are different clear-sky models available, Ineichen (2006) and
we use the one presented in Hammer et al. (1998) to estimate clear-
sky irradiance for all the above-mentioned locations. To ensure con-
servative results, we only use k� data associated with solar elevation
angles greater than 10o. The clear-sky index values are positive and
the maximum is around unity, except for short periods of over irra-
diance caused by cloud reflection, Yordanov et al. (2013).

As an example of the utilized data, Fig. 1(a) presents measured
solar irradiance by a single sensor in Hawaii, where night times are
removed. The corresponding clear-sky index time series is shown
in panel (b), and the beginning and end of a single day are indi-
cated by vertical lines.

3. Theory: methods of analysis

3.1. Description of methods

In this section, we review two standard methods, namely the
analysis of the correlation function and the MF-DFA to investigate
the fractal and multifractal properties of stochastic processes. Also,
we provide details to surrogate a given time series by random-
phase and rank-wised methods.

Table 1
Data description.

Dataset Data
points

Measurement
duration (days)

Frequency
(Hz)

Solar irradiance, Hawaii 14� 106 �365 1

Solar irradiance, Spain 1:3� 106 �1331 1/60

Solar irradiance, Sahara
(Algeria)

3:7� 106 �3740 1/60

Solar irradiance,
Germany

2:7� 105 �430 1/60 Fig. 1. (a) Measured solar irradiance of a single sensor for Hawaii and (b) its
corresponding clear sky index time series. Night times have been removed.
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