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a b s t r a c t

In order to increase PV penetration and guarantee the grid stability, it is fundamental to accurately pre-
dict the power produced from PV plants. This work discusses a comprehensive thermo-electric model
accounting for PV module dynamic behavior. Specifically, the thermal part considers five different sec-
tions featuring the five layers of the PV module. The electrical behavior of the PV module is described
by the five parameters electric equivalent circuit where the operating temperature is calculated within
the thermal model. The accuracy of the model is evaluated against the power produced by two monocrys-
talline silicon modules at the SolarTechLab of Politecnico di Milano using both actual weather information
and the weather forecast. Results highlight that dynamic models adequately characterize the behavior of
the modules when actual weather measurements are available; the resulting error indexes WMAE and
RMSE for the dynamic model are reduced with respect to steady-state and conventional approaches
based on NOCT by 50%. Indeed, the WMAE is approximately 1%, which is comparable to the uncertainty
related to measuring instrumentations, whereas the RMSE is included between 3W and 4W. When using
the long term weather forecast, no advantages in the development of dynamic models can be noted.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The electricity produced by renewable energy sources (RES) has
been increasing world-wide thanks to technological advance-
ments, cost reduction and government policies. For example, the
total installed capacity of RES in the world has doubled since
2006 (1036 GW in 2006 vs. 1985 GW in 2015) (Renewable
Capacity Statistics 2016, n.d.). Most of this growth is related to
the increased capacity of photovoltaic (6 GW vs. 222 GW) and
wind energy (73 GW vs. 440 GW). As consequence, the higher
share of variable RES in the power generation sector leads to signif-
icant challenges in the control and reliability of the power trans-
mission system: grid operators have to control a variable power
supply together with a variable demand. Two options can be used
to control the grid while using most of the renewable energy pro-
duced: the first one requires the installation of storage systems
(which can be batteries, pump-hydro, etc.) and the second one is
the development of accurate models for power generation predic-
tion starting from the weather forecast/conditions. This work fits in

the second group, focusing on Photovoltaic (PV) technology: there-
fore, only PV forecasting models will be discussed from now on.

The existing approaches of forecasting models can be classified
into these three categories: physical, statistical and hybrid (Rus-
Casas et al., 2014; Ulbricht et al., 2013).

Physical models predict the power generated by PV modules
describing the conversion processes from the solar energy to elec-
tricity. Being physical models the core of this work, more details
will be discussed later. Statistical methods are based on the con-
cept of persistence, or stochastic time series, and are typically
based on machine learning methods. Reviewed literature shows
that artificial neural networks (ANN) have been successfully
applied for forecasts of fluctuating energy supply (Hocaoglu
et al., 2008; Izgi et al., 2012; Mellit and Massi Pavan, 2010). These
methods learn to recognize patterns in data using training data
sets which is the main disadvantage of this approach.

Any combination of two or more of the previously described
methods leads to a hybrid model. The idea is to combine different
models with unique features to overcome the single negative per-
formance and finally improve the forecast (Chopde et al., 2016;
Ogliari et al., 2013).

Focusing only on physical models, two different approaches can
be found in the scientific literature:
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1. Models aiming to the characterization of the cell temperature
through detailed description of the thermal phenomena. The
electric conversion is described by explicit formulas (Notton
et al., 2005; Tina et al., 2011);

2. Models concentrating on the electric conversion mechanisms
within the module for the prediction of the I-V characteristic
curve (Barth et al., 2016; Celik and Acikgoz, 2007; Ciulla
et al., 2014; de Blas et al., 2002; Lineykin et al., 2014; Lo
Brano et al., 2010; Ma et al., 2013, 2014; Shongwe and
Hanif, 2015; Siddiqui et al., 2013; Tossa et al., 2014). In this
case the cell temperature used in the model is generally
calculated with the NOCT approach. In few cases, the
temperature is calculated through more complex thermal
models (Bizzarri et al., 2012; Dolara et al., 2015; King
et al., 2004).

This paper proposes an integration between these two
approaches to accurately describe all the phenomena occurring
within a PV module. The proposed models are developed under
steady-state and dynamic conditions aiming to determine the
importance of the dynamic behavior using both actual weather
conditions and weather forecasts.

Various studies regarding the implementation of dynamic mod-
els for the calculation of PV cell temperature are available in liter-
ature. Generally, in those cases, the electric power produced is
calculated with simple and explicit relations, considering for
example NOCT model or the fill factor.

Jones and Underwood (2001), Torres Lobera and Valkealahti
(2013) proposed a simple thermal model, characterized by a global
energy balance on the module with one equivalent thermal capac-
ity. In both studies, only the cell absorbance has been included in
the optical model, which is considered independent from the inci-
dence angle. Results showed that the standard error is between
1.2 �C and 3.0 �C (Jones and Underwood, 2001) or that the RMSE
varies between 1.18 �C and 4.76 �C, furtherly reduced below 2 �C
after performing a sensitivity analysis (Torres Lobera and
Valkealahti, 2013).

On the other hand, Tsai and Tsai (2012) developed a single-
capacity thermal model coupled with a five parameters electric
equivalent circuit that was able to achieve a normalized RMSE of
1.98 % after performing a parameters optimization through a sen-
sitivity analysis.

Three thermal capacities for the PV module are considered in
other studies (Notton et al., 2005; Tina et al., 2011), increasing
the accuracy of the thermal mechanisms within the panel together
with the complexity of the model. In both studies, the incident irra-
diance is split into two fractions: the first one absorbed by the glass
and the remaining by the PV cells; the optical parameters are
assumed to be independent from the incidence angle. The model
proposed by Notton et al. (2005) has a RMSE of 1.30 �C for the cell
temperature and 1.52 �C for the back temperature. On the other
side, in (Tina et al., 2011) the irradiance absorbed by cells includes
multiple reflections mechanisms between layers and the electric
power is calculated considering the module efficiency, which is a

Nomenclature

A area (m2)
C electric or thermal capacitance (F or J K�1)
c specific heat (J kg�1 K�1)
D diameter (m)
EG bandgap energy of the silicon (eV)
e error (W)
h convective heat transfer coefficient (W m�2 K�1)
k thermal conductivity (Wm�1 K�1) or Boltzmann con-

stant (eV)
G solar radiation (Wm�2)
g gravity acceleration (m s�2)
I current (A)
l length (m)
N number of PV cells connected in series (–)
NOCT nominal operating cell temperature (K)
Nu Nusselt number (–)
n diode ideality factor (n)
P electric power (W)
Pr Prandtl number (–)
R electric or thermal resistance (X or K W�1)
RMSE root mean square error (W)
Ra Rayleigh number (–)
Re Reynolds number (–)
s thickness (m)
T temperature (K)
t time (s)
V voltage (V)
v velocity (m s�1)
WMAE weighted mean absolute error (–)
w width (m)
z height from the ground (m)

Greek symbols
a absorbance (–)
aISC temperature coefficient for short circuit current (–)

b tilt angle (�)
e emissivity (–)
h incident angle (�)
m kinematic viscosity (m2 s�1)
q density (kg m�3) or reflectance (–)
r stefan-Boltzmann constant (W K�4)
s transmittance (–)
/ heat flux (Wm�2)

Subscript
A ambient
B back layer or Beam component
C single PV cell
D diffuse component or diode
E EVA (Ethylene Vinyl Acetate) layer
G glass layer
GLOB global
H horizontal
HYD hydraulic
M overall PV module or measured
MPP maximum power point
OC open circuit
P predicted
R roof or reflected component
REF reference
PV photovoltaic cell layer or module
S sky or surface or cell series
SC short circuit
SH shunt
T thermal
W wind
Z zenith
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