

Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

Brief Note

A facile one-step strategy for in-situ fabrication of WO₃-BiVO₄ nanoarrays for solar-driven photoelectrochemical water splitting applications

Naseer Igbal a,b, Ibrahim Khan a,c, Zain Hassan Abdallah Yamani a,d, Ahsanulhaq Qurashi a,c,*

- ^a Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- ^b Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 45550, Pakistan
- ^c Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
- ^d Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

ARTICLE INFO

Article history: Received 26 September 2016 Received in revised form 18 January 2017 Accepted 24 January 2017

Keywords: Heteronanostructures Solar water splitting Nanorods Tungsten oxide bismuth vanadate Hydrothermal

ABSTRACT

This paper presents a facile single step strategy for fabrication of tungsten, bismuth and vanadium mixed metal oxide nanoarrays. WO₃-BiVO₄ heteronanostructure was obtained hydrothermally with reaction time of two hrs at low temperature 110 °C. The morphology of as prepared WO₃-BiVO₄ heterostructure revealed uniform and prominent nanorods like architectures under FE-SEM. These heteronanostructures were of variable sizes i.e., width ≤100 nm and length 200-400 nm respectively. The energy dispersive X-ray analysis (EDX) and elemental mapping of heteronanostructure further confirmed W, Bi, V and O entities in good elemental composition. The purity and crystalline nature of as synthesized WO₃-BiVO₄ were confirmed from X-ray crystallographic (XRD) analysis. UV-Visible spectroscopy and Raman analysis were also carried out to investigate optical properties of WO₃-BiVO₄. The band gap energy of WO₃-BiVO₄ calculated from UV-Visible absorption and diffused reflectance spectroscopy's was observed to be 2.1 eV respectively. The photoelectrochemical (PEC) studies of FTO coated WO₃-BiVO₄ showed a stable and repeatable photocurrent response under 1 SUN solar irradiation source. The linear sweep voltammetry (LSV) and Cyclic Voltammetry (CV) also corroborated substantial photocurrents at different oxidation and reduction potentials. Consequently, it is envisioned that this one-step strategy for in-situ fabrication of WO₃-BiVO₄ heteronanostructures have potential applications in solar-driven photoelectrochemical water splitting reactions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since the advent of solar water splitting techniques (Fujishima and Honda, 1972) the research in development of photoelectrocatalysts gained utmost attention (Liao et al., 2014; Reece et al., 2011; Kuang et al., 2016; Qurashi et al., 2015; Iqbal et al., 2016). Fabrication of an optimal material for emergent alternative or green energy resources such as H₂ and O₂ evolution from photoelectrochemical water splitting through a simple and cost effective strategy is a drastic challenge (Avasare et al., 2015; Maeda and Domen, 2010). Various factors on materials standpoint are decisive in order to fabricate a reliable photocatalyst system for solar light driven water splitting which include solar-to- hydrogen conversion

E-mail address: ahsanulhaq@kfupm.edu.sa (A. Qurashi).

(STH) efficiency (May et al., 2015), morphology of the materials (Lai, 2015), photocorrosion (Guo et al., 2010), high charge carrier recombination (Abdi et al., 2013; Appavoo et al., 2015), and band gap energies (Sivula and van de Krol, 2016), etc. Nevertheless, researchers explored many semiconducting heteronanostructures as shown in table 1 that demonstrated remarkable photoelectrochemical activities (Osterloh and Parkinson, 2011; Pihosh et al., 2014; Khan et al., 2016; Ibrahim et al., 2016). Apart from these, several other factors which include a simple or facile strategy of photocatalyst fabrication, cost effectiveness, low temperature, reaction time, etc. are also imperative in evaluating a photocatalyst in real life applications as well as for commercialization.

In recent years, several materials such as TiO_2 and $BiVO_4$ are among the extensively used materials in solar water splitting (Fujishima and Honda, 1972; Yang et al., 2013; Kuang et al., 2016; Pihosh et al., 2014). The wide band gap energy of TiO_2 (3.2 eV) (Pihosh et al., 2014) restricted its photoelectrochemical

^{*} Corresponding author at: Center of Research Excellence in Nanotechnology, and Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

Table 1Different WO₃/BiVO₄ semiconducting nanostructures recently used in solar driven water splitting applications.

Nanomaterial type	Methodology	Reaction conditions	Morphology	Current density	Band Gap (eV)	Year/ Reference
WO₃/BiVO₄ thin film	Wet synthesis: Step wise spin coating From precursor solutions	Annealing at 550 °C for 1 h	Grains like	120 μA·cm²	2.43	2009/ Chatchai et al. (2009)
WO₃/BiVO₄ heterojunction films	Solvothermal(ST) growth of WO3 nanorods on FTO followed by BiVO ₄ spin coatings	180 °C for 24 h (ST) and annealing at 500 °C for 2 h	Nanorods	1.6 mA/cm ²	2.4	2011/Su et al. (2011)
WO ₃ -NRs, WO ₃ -NRs/BiVO ₄ and WO ₃ -NRs/BiVO ₄ photoanodes modified with Co-Pi	Reactive magnetron sputtering and Glancing Angle Deposition (GLAD)	Annealing in air at 500 °C for 4.5 h.	Nanorods	$WO_{3}-MRS = \sim 0.4 \text{ mA/}$ cm^{2} $WO_{3}-NRS/$ $BiVO_{4} = \sim 2 \text{ mA/}$ cm^{2} $WO_{3}-NRS/BiVO_{4}-$ $Co-Pi = 3.2 \text{ mA/}$ cm^{2}	2.4	2014/ Pihosh et al. (2014)
WO ₃ /BiVO ₄ heterojunctions	Solution processed method	1 h at 80 °C and annealed for 1 h at 500 °C	Aggregated network of particles/sequential layering of WO ₃ and BiVO ₄	1 mA/cm ²	=	2015/ Grigioni et al. (2015)
WO ₃ /BiVO ₄ core/shell nanorods in photovoltaic- photoelectrochemical (PV-PEC) tandem device based on GaAs/ InGaAsP (PV cell) and WO ₃ /BiVO ₄ core/shell nanorods (PEC cell)	Combination of GLAD and electrochemical deposition (ED)	500 °C for 2 h	Nanorods	PV-PEC tandem device = 6.56 mA/ cm ²	-	2016/ Sonya et al. (2016)
Single phase WO ₃ -BiVO ₄ heteronanostructure composites	Hydrothermal reaction	110 °C for 2 h and annealed in air for 2 h for 80 °C	Nanorods	0.5 mA·cm ²	2.1	This work

properties (Fujishima and Honda, 1972; Sivula and van de Krol, 2016). However, low band gap photocatalyts are suitable for capturing visible light spectrum but they are mostly susceptible to photocorrosion as compared to their larger band gap counterparts. Furthermore, it is studied (Su et al., 2011) that on coupling a larger band gap photocatalytic material with a smaller band gap material, a more negative conduction band is expected. Thus the electrons in conduction band can move from smaller band gap photocatalytic material into the larger band gap material. Consider BiVO₄ which has a narrow band gap of (2.4 eV) in monoclinic phase, it has excellent stability against photocorrosion and its preparation is cost effective too. Theoretically, under the standard AM 1.5G solar irradiation, STH efficiency of BiVO₄ approaches 9.2% with the photocurrent of 7.5 mA cm⁻². Despite of being a good photon absorber with a direct bandgap, BiVO₄ has poor electron transport properties (Abdi and van de Krol, 2012) that is attributed to high recombination rate of photogenerated carriers. Henceforth, BiVO₄ is characterized by a short carrier diffusion length (Ld) of around 70 nm³, which is the main reason of BiVO₄ photo anodes to generate small photocurrents (Pihosh et al., 2015). In this scenario, the incorporation of different metallic centers or oxides such as WO₃ with BiVO₄ could enhance their photoelectrochemical properties. As the conduction band of BiVO₄ is more negative than that of WO₃ (Pihosh et al., 2015) so when coupled with photocorrosion resistant WO3, the photo anodes (Long and Kisch, 2008; Luo et al., 2011), thus fabricated could be employed for reliable and photoelectrochemical applications under effectual irradiation.

In the present research work, we are successfully reporting a new facile and single step strategy where in-situ impregnation of photocorrosion resistant WO₃ is carried out with BiVO₄ in a hydrothermal reaction. The most exciting features of this strategy were one step fabrication of WO₃-BiVO₄ nanorods like heterostructure at low temperature 110 °C in 2 h. The as synthesized WO₃-BiVO₄ heteronanostructures were fully characterized via UV–VIS,

Raman, XRD, FE-SEM, EDX, etc. techniques and also investigated for photoelectrochemical (PEC) water splitting studies.

2. Materials and methods

All the chemicals and reagents such as Tungsten hexachloride (WCl₆), Bismuth trinitrate penta hydrate $[Bi(NO_3)_3 \cdot 5H_2O]$ and vanadium pentoxide (V_2O_5) precursors were purchased from Sigma Aldrich and used as received unless otherwise stated.

2.1. Preparation of WO₃-BiVO₄

Equal amounts of each precursor Tungsten hexachloride (WCl₆), Bismuth trinitrate penta hydrate (Bi(NO₃)₃·5H₂O) and vanadium pentoxide (V₂O₅) were mixed in deionized water and stirred for 30 min. at room temperature until a homogenous mixture is obtained. The reaction mixture was further sonicated for 30 min. at room temperature. The resulting reaction mixture was poured into a Teflon vessel enclosed with a steeliness steel autoclave Jacket in order to proceed a hydrothermal reaction. This autoclave reactor was then placed into oven at 110 °C for 2 h. Later on, reaction mixture was centrifuged at 4000 rpm for 5 min. The yellowish brown product (WO₃-BiVO₄) was collected and dried at 100 °C in vacuum oven.

2.2. Characterization of WO₃-BiVO₄ heteronanostructures

The crystalline phases of as-synthesized WO₃-BiVO₄ heteronanostructures were identified by X-ray diffraction (XRD) technique using a Benchtop MiniFlex -X-ray Diffraction instrument (Mini-XRD) from Rigaku (40 kV and 15 mA) in the range of 10–70° (2θ) at a scanning rate of 3° min⁻¹. The morphology of the WO₃-BiVO₄ heteronanostructures were investigated by Tescan Lyra 3 Field Emission Dual Beam (Electron/Focused Ion Beam)

Download English Version:

https://daneshyari.com/en/article/5451175

Download Persian Version:

https://daneshyari.com/article/5451175

<u>Daneshyari.com</u>