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a b s t r a c t

The analysis of long term data for degradation of PV modules suffers from volatility and uncertainty due
to intrinsic and extrinsic factors. The low rate of degradation causes analysis complexity and ambiguity.
In this study, methods used to estimate the PV module lifetimes were reviewed in terms of degradation of
power output with time. Under the assumption that degradation is continuous, gradual, and monotonic,
the gamma process model can explain the sampling and temporal uncertainties of lifetime data.
Examples are provided to demonstrate the use of gamma process model for long term and accelerated
lifetime test (ALT) data. Three types of lifetime estimation method were compared for long term opera-
tion data. Although they all gave similar estimated lifetime, the gamma process model gave the most
applicable results to determine warranty life. The gamma process model can also express the condition
variation at inspection and the lifetime variation at failure level as probability distributions. A method to
determine warranty life is proposed using an age based replacement policy. For ALT data, we estimated
the lifetime from degradation data using the Arrhenius equation for standard environmental conditions
and applied the gamma process model to obtain time varying probability distributions for condition and
lifetime. Service life was estimated as the median, while warranty life was estimated as the minimum
rate of increase of optimal replacement time.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Photovoltaic (PV) modules are solid-state devices that convert
sunlight directly into electricity without requiring heat engines
or rotating equipment. When the semiconducting material is
exposed to light, electrical charges are generated. The electrical
output from a single cell is small, so multiple cells are connected
and encapsulated to form a module. Although PV systems have
environmental advantages, low efficiency and high cost of manu-
facturing the sheets of semiconductor materials are significant
drawbacks. Efficiency improvements of the panels and manufac-
turing methods have steadily reduced the costs and PV systems
have become of great interest worldwide (Kalogirou, 2014).

The Annual Energy Outlook for 2015 from the Energy Informa-
tion Administration of the US Department of Energy states that fos-
sil fuel, including natural gas, coal, petroleum and other liquids,
accounts for 78% of total energy consumption, while renewables
constitute just 8% (Energy Information Administration , 2015).

However, in the context of present energy crisis and the conse-
quences of fossil fuels on our environment, the development
and use of renewable energy sources has become very important.
Solar PV technology is one of the most important renewable
sources of energy generation (Gaur and Tiwari, 2013). PV power
generation takes a leading role in the renewable energy market
and has received great attention in developing countries as an
appropriate technology with rapid growth over the last few
decades (Panyakeow, 1984; Ahmad et al., 2010).

The useful lifetime of PV modules is an important factor deter-
mining the cost per unit of generated electricity and estimating
this lifetime is just as important as determining the power output
or efficiency of a module (Ossenbrink and Sample, 2003). In 1993,
the International Electrochemical Commission (IEC) developed the
IEC 61215 standard to guarantee PV module lifetimes of 15–
20 years in moderate climates and has applied it to qualification
testing (IEC 61215, 1993). The IEC Module Type Approval tests
have effectively addressed commercial module design problems
well (Ossenbrink and Sample, 2003). However, the tested stress
level limited and quality approval does not guarantee long term
performance, but only confirms satisfaction of the required speci-
fication. It is difficult to clearly identify the predominant failure
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mechanism(s) of long term operation (Osterwald and McMahon,
2009), since long term data collection to confirm PV module
degradation pathways and lifetimes is difficult due to the low
rate of performance degradation. Therefore, it is necessary to
study reliability directly, such as failure mechanism(s), degrada-
tion rate, and develop suitable models to estimate remaining
useful lifetime, etc.

Performance evaluation of 192 PV modules installed at SERC in
1990 showed that average maximum power output degraded
4.39% over 11 years from discoloration, browning, and ethylene–
vinyl acetate copolymer (EVA) delamination and the variance sig-
nificantly increased (Reis et al., 2002). Corrosion and cell or
interconnection-breaks accounted for 86% of the failure modes
with failures related workmanship, process control, and system
problems comprising the balance (Wohlgemuth et al., 2005). Envi-
ronmental factors contributing to failure were solar (particularly
UV) radiation, humidity, wind, snow, rain, hail, high or low temper-
atures, salt, sand, dust, gas, etc. (Ndiaye et al., 2013; Phinikarides
et al., 2014; Bhattacharya et al., 2014). These factors produce tem-
poral uncertainty of degradation and broad variation because of
compounding effects on the PV modules by mechanical, chemical,
and thermal stresses.

There are two failure types: functional failure, where the mod-
ule fails to provide the intended function; and conditional failure,
where the module degrades below a predefined level in the pre-
scribed operational environment. Factors leading to conditional
failure are divided into internal and external factors. Internal fac-
tors are related to inhomogeneity or material imperfections, and
external factors are related to environmental stresses (Ferrara
and Philipp, 2012; Park and Kim, 2016). These effects compound
on PV module performance, and the power output degrades to
some predefined failure level. Internal factors suffer from sampling
uncertainty resulting in variation of degradation rate in the same
operational environment. On the other hand, external factors suffer
from temporal uncertainty resulting in non-linearity of the degra-
dation path for the same material. Therefore, the volatile and
ambiguous characteristics of power output degradation with time
should be modelled stochastically to estimate PV module lifetimes
with reliability (Park and Kim, 2016).

Stochastic model has been applied previously to deal with life-
time data that displays temporal uncertainty of degradation. The
gamma process model, in particular, is suitable to model gradual,
monotonic, and continuous degradation phenomena but it has
not previously been applied to estimate PV module lifetimes.
Therefore, we focus on the gamma process model, comparing the
outcomes to other lifetime estimation models, such as determinis-
tic and statistical model, for analyzing long term degradation data.
We estimate the variation of probability distribution for failure and
lifetime with operational time using the gamma process model and
develop a method to estimate PV module lifetime based on long
term operation and accelerated life test (ALT) data. The proposed
method to determine warranty life based on an age replacement
policy is presented using the estimated lifetime probability distri-
bution from the gamma process model.

2. Lifetime estimation for long term data

2.1. Long term data and failure criteria

To compare the lifetime estimation models, we used the long
term data from Kuitche (Kuitche, 2010), as shown in Fig. 1. and
we applied deterministic, statistical, and stochastic models to
these data. Fig. 1 shows the fraction of initial power output mea-
sured each year between 1998 and 2009 for four mono-
crystalline PV modules. The degradation rate increases rapidly

after 2000 days of operation. The individual or system performance
degrades gradually with time, but still affects performance above
the threshold level. PV modules are usually guaranteed to perform
to 80% of the initial power for 20–25 years (Wohlgemuth et al.,
2005; Ndiaye et al., 2013; Carr and Pryor, 2004). This paper consid-
ers power output decrease time in outdoor use over long periods
with 20% power loss as the critical threshold level or failure level
for conditional failure.

Fig. 2 shows the degradation path model with operational
time. PV module power output degrades from some initial state,
r0, to the failure state, s. Let XðtiÞ be the cumulative degradation
at some inspection time. In the early stages, PV module power
output is relatively stable. However, the power output degrades
and the rate of degradation increases with time, then levels off
somewhat. Fig. 2 also shows the variation at inspection (condition
distribution), as well as at the failure level (lifetime distribution).
Although the data fits various non-linear regression equations
well, the power output for any inspection time may drop
unexpectedly and this drop may be expected to be continued
for subsequent inspections. Thus, the long term degradation data
appears as a staircase.

2.2. Long term data characteristics

We live in a volatile, uncertain, complex, and ambiguous
(VUCA) world. The phrase was introduced by the U.S. Army
War College to describe the multilateral world resulting from
the end of the Cold War, and VUCA has mainly been used for
strategic leadership in the area of business management, as
shown in Fig. 3 (Lawrence, 2013; Davies, 2015). We apply the
VUCA approach to describe long term data characteristics from
Fig. 2. Volatility and uncertainty are related to the nature of
degradation and complexity and ambiguity to test & analysis
methods.

� Volatility: the rate and amount of performance degradation vary
in a volatile manner under the influence of environmental cir-
cumstances and interaction between parts. A great deal of long
term data would be required to identify the volatile driving fac-
tors, but gathering such long term data is time consuming and
costly.

� Uncertainty: the degradation path is not invariant or expected.
The uncertainty originates from time varying, compounding
environmental stresses (temporal uncertainty) and material
inhomogeneity of either individual parts or the system (sam-
pling uncertainty). Therefore, the Markovian property exists

Fig. 1. Normalized power output degradation with time.
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