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a b s t r a c t

It is cost effective to manufacture a reflective surface of a solar parabolic trough concentrator in a para-
bolic cylinder shape by pure bending of a flat sheet. However, the surface manufactured by such an elastic
bucking is only a coarse approximation of a parabola, which is not precise enough for meeting the
demand of a high quality concentrator. A novel design concept was proposed to remove this error by
applying an external force on both edge of a sheet, together with two additional forces: the edge torsion
force and the pressing force. The optimal position and magnitude of two additional forces were figured
out among various conditions, thereby a theoretically maximal concentration ratio up to 115 was found.
Prototypes and engineering realizations of this method were also presented. This method provides a very
attractive approach for low cost and high efficiency solar energy solutions.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A parabolic trough is a concentrating solar thermal energy col-
lector that uses a mirror in a form of a parabolic cylinder to reflect
solar rays towards a receiver tube located at the focus line of the
parabola. It has the advantage of being reliable and of low cost,
and it can reach a working temperature high enough for efficient
power generation (Price et al., 2002; Fernández-García et al.,
2010; Wirz et al., 2014; Tsai, 2016).

The geometric precision and manufacturing cost of the para-
bolic mirror are the fundamental factors in the production of a
parabolic trough. Traditionally, the support of the mirror is a rigid
sheet precisely preformed to the shape of a parabolic cylinder
(Hatwaambo et al., 2008; Thomas and Guven, 1993). This consti-
tutes an important part of the product cost, because both the rigid-
ity of the material and the high precision requirement of the
forming process are expensive.

Alternatively, it is possible to make use of the pure bending of a
flat sheet to form an approximately parabolic cylinder, as under
certain conditions, the shape of the buckled flat sheet is usefully
close to the parabola (Li et al., 2011a,b; Li and Dubowsky, 2011).
While the cost advantage of this approach is obvious, it only

provides a rough approximation that does not meet the precision
requirement of a high quality solar concentrator, nor does it allow
any correction of eventual defects of the material or the manufac-
turing processes.

The aim of this article is to propose an improved approximation
of the parabolic cylinder by the elastic deformation of a flat sheet,
by applying additional external forces besides the buckling force.
These involve in a torsion force at each edge of the sheet, and
two pressing force in the curve. With optimal amount of the forces
and optimal positions of the points, this method leads to an
approximation of the parabola with a much higher precision.

2. The buckling curve

2.1. The curve equation

The buckling of a flat sheet can be seen as a simple development
of a straight rod on a perpendicular dimension. Therefore it is
enough to consider the hinged pure bending of a straight uniform
rod, whose diameter is supposed to be infinitesimally small. Sup-
pose that the original rod is under a horizontal position, and that
its weight is infinitesimal, thus there is no effect of the gravity.
When two edges of the rod are compressed to some extent by an
external force, F, the rod will elastically deform to be a curved
shape (see Fig. 1).
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The curvature of the curve at a point ðx; yÞ is proportional to the
moment of force exercised on that point in terms of the principle
on pure bending, therefore for the right half part of the curve,
the curvature can be given by Timoshenko and Gere (1961), Beer
et al. (1972).

kðxÞ ¼ M
EI

ð1Þ

As the moment, M, is equal to Fðy0 � yÞ Li et al., 2011a, substi-
tuting it into Eq. (1), the following equation was obtained

kðxÞ ¼ � F
EI

ðy� y0Þ ð2Þ

where kðxÞ is the curvature of a curve at ðx; yÞ, and can be calculated

by kðxÞ ¼ y00 ðxÞ
ð1þy0 ðxÞ2Þ3=2

(Yates, 1952). E is Young’s modulus of elasticity. I

is the inertia moment of the section area, and determined by the

equation I ¼ R
A y

2dA, for a rectangular beam, I ¼ bh3

12 . F is an external
force, denotes a scalar here.

Substituting Eq.(2) into kðxÞ ¼ y00 ðxÞ
ð1þy0 ðxÞ2Þ3=2

, it yields:

y00 ¼ � F
EI

ðy� y0Þð1þ y02Þ3=2 ð3Þ

Under the hypotheses, the curve is symmetric, that is, y2 ¼ y0
and x0 ¼ �x2. By symmetry, the computation needs only be done
on the right half of the curve, for the interval ½x1; x0�. And we can

fix the first boundary conditions yð0Þ ¼ 0 from the Fig.1 and the
second boundary condition on y0ð0Þ ¼ 0 by symmetry, thus the
boundary conditions are available as following:

yð0Þ ¼ 0 ð1Þ
y0ð0Þ ¼ 0 ð2Þ

�
ð4Þ

However, it is necessary to determine y0 to solve Eq. (3). Actu-
ally (1 + y02)3/2 can be written in the form of series as below

ð1þ y02Þ3=2 ¼ 1þ 3
2
y02 þ 3

8
y04 þ . . . ð5Þ

Substitute Eq (5) into Eq. (3), yielding

y00 � F
EI

ðy� y0Þ 1þ 3
2
y02 þ 3

8
y04 þ . . .

� �
¼ 0 ð6Þ

Based on the boundary condition y(0) = 0 and y0(0) = 0, at x = 0
the function y, in terms of Tailor formula, can be expressed as

y ¼ a1xþ a2x2 þ a3x3 þ a4x4 þ a5x5 þ a6x6 þ . . . ð7Þ
From Eq. (7) the following two equations can be obtained:

y0 ¼ a1 þ 2a2xþ 3a3x2 þ 4a4x3 þ 5a5x4 þ 6a6x5 þ . . . ð8Þ

y00 ¼ 2a2 þ 6a3xþ 12a4x2 þ 20a5x3 þ 30a6x4 þ . . . ð9Þ
where a1 is equal to 0 due to y0(0) = 0. To substitute Eqs. (7)–(9) into
Eq. (6), the following equation was obtained

2a2� F
EI
y0þ6a3xþ 12a4� F

EI
ð6y0a22�a2Þ

� �
x2

þ 20a5� F
EI
ð18y0a22�a3Þ

� �
x3

þ 30a6� F
EI

6y0a
4
2þ24y0a2a4þ27

2
y0a

2
3�6a32�a4

� �� �
x4þ . . .¼0

ð10Þ
Each term’s factor must be 0 for the left of Eq. (10) in order to

keep their sum equal to 0, that is

Nomenclature

ai factor, where i ¼ 1;2;3 . . .
A area, m2

b width of a cross section, m
d diameter, m
dðxrÞ focus deviation, m
d1ðxÞ the upper bound of the reflected cone, m
d2ðxÞ the lower bound of the reflected cone, m
DðxÞ the distance between the reflecting point to the center

of the receiver, m
E Young’s modulus of elasticity, N m�2

F the external force, N
h height of a cross section, m
I the inertia moment, m�4

kðxÞ the curvature of the curve at ðx; yÞ, m�1

y00 y0ðx0Þ
k The curvature caused by external force (F), m�1

M moment, N m
R1 the incident solar radiation beam
R2 the reflected solar radiation beam
W the opening width of the curve: W ¼ x1 � x0, m
x horizontal coordinate of a point on a curve, m
y vertical coordinate of a point on a curve, m
y0, y0ðxÞ the firs derivative of the curve

y00, y00ðxÞ the second derivative of the curve
yf the position of the receiver on the y axis, m

Greek symbols
a the angle between the vector ðx� xp; y� ypÞ and the

tangent vector of C at ðxp; ypÞ, rad
h the tangent angle of the curve at a certain point, rad
hc the top angle of the cone, rad
q the concentration radio

Subscription
0 end point of the curve
c cone
e edge torsion force
f focus point
h horizontal component
v vertical component
m pressing force
r reflection
rec receiver tube
p position at which torsion force applies
q position at which pressing force applies
sys overall

x
0
, y

0
x2, y2 F F

x1, y1

Fig. 1. The buckling curve.
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