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a b s t r a c t

The need for reduction in CO2 emissions to mitigate global warming has resulted in increasing use of
renewable energy sources. In urban areas, solar photovoltaic (PV) deployment on existing rooftops is
one of the most viable sustainable energy resources. The present study uses a combination of support
vector machines (SVMs) and geographic information systems (GIS) to estimate the rooftop solar PV
potential for the urban areas at the commune level (the smallest administrative division) in
Switzerland. The rooftop solar PV potential for a total 1901 out of 2477 communes in Switzerland is esti-
mated. Following a 6-fold cross validation, the root-mean-square error (also normalized) is used to esti-
mate the accuracy of the different SVMmodels. The results show that, on average, 81% of the total ground
floor area of each building corresponds to the available roof area for the PV installation. Also considering
the total available roof area for PV installation, that is, 328 km2 and roof orientations within ±90� of due
south, the annual potential PV electricity production for the urban areas in Switzerland is estimated at
17.86 TW h (assumed 17% efficiency and 80% performance ratio). This amount corresponds to 28% of
Switzerland’s electricity consumption in 2015.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Swiss Federal Council’s ‘‘Energy Strategy 2050”, initiated in
2011 partly as a consequence of the Fukushima nuclear accident,
proposes a phasing-out of nuclear energy by the year 2035,
currently generating 40% of the national electricity demand
(http://www.bfe.admin.ch/). To compensate for the loss of nuclear
energy, the federal Council’s Energy Strategy anticipates not only
the improvement of energy efficiency, but also the increase in
the use of renewable energy and associated development of grid
and storage capacity. In addition, the Swiss climate policy aims
at a drastic reduction of the country’s GHG emissions, including
20–30% reduction of the country’s CO2 emissions from the 1990
level by the year 2020, according to the revised federal CO2 Act,
and a possible 50–80% reduction by 2050. Buildings have the lar-
gest share in energy demand in Switzerland: heating, ventilation,
and air conditioning account for roughly 40% of the overall energy
demand; 32% of the national electricity demand is also caused by
buildings (HVAC, lighting, space heating). Therefore, the goals of
the ‘‘Energy Strategy 2050” and the Swiss climate strategy can only
meet when buildings become much more energy efficient

compared to today’s situation. To reach these goals, the remaining
demand must primarily be met by renewable energies.

Solar photovoltaic (PV) panels on the existing building rooftops
have proven to be an efficient and viable large scale resource of
sustainable energy for urban areas (Wittmann et al., 1997;
International Energy Agency IEA, 2002; Izquierdo et al., 2008;
Wiginton et al., 2010; Hernandez et al., 2015; Yuan et al., 2016).
In addition, solar panels can have an important role in integration
of decentralised renewable energy resources in a neighbourhood
(Mavromatidis et al., 2015; Wegertseder et al., 2016). In Switzer-
land, only 1.2% electricity generated in 2014 comes from PV
(Kemmler et al., 2015) but is likely to increase to 13.4% by 2050
(Berg and Real, 2006). The feasibility of solar PV installations is
of importance not only for individual property owners, but also
the local governments and municipalities (Strzalka et al., 2012).

Depending on the availability of data, regional characteristics,
as well as scale of study, several methodologies have been sug-
gested to determine rooftop PV potential (e.g. Byrne et al., 2014;
Yuan et al., 2016; Ramirez Camargo et al., 2015). At the scale of
Europe as a whole (27 EU members), studies show that there is a
large building–integrated photovoltaics (BIPV) potential,
840 TW h annually, which equals more than 22% of the expected
European electricity demand by 2030 (Šúri et al., 2007; Defaix
et al., 2012; Byrne et al., 2014). At national and regional scales,
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studies show significant values for urban (rooftop) PV applications
in many countries. These include the USA (Denholm and Margolis,
2008; Paidipati et al., 2008), Israel (Vardimon, 2011), Canada
(Pelland and Poissant, 2006), and Spain (Ordonez et al., 2010),
where urban PV deployment could potentially cover 15–45% of
national electricity consumption. At regional scale, Lopez et al.
(2012) provide a GIS-based methodology for all the states of USA
and their technical rooftop potential. Several studies explore the
PV potential for buildings at the city and neighbourhood scale
(e.g. Hofierka and Kaňuk, 2009; Bergamasco and Asinari, 2011;
Strzalka et al., 2012; Peng and Lu, 2013; Byrne et al., 2014). For
Hong Kong (Peng and Lu, 2013), as an example, the estimated
potential of rooftop PV is 5981 GW h which can account for
14.2% of the city’s 2011 electricity use. Another example is Seoul
in South Korea where deployment of rooftop distributed photo-
voltaic systems can cover 30% of the city’s annual electricity
consumption.

Several studies propose a hierarchical approach for estimating
the rooftop potential of PV on a national scale (Hoogwijk, 2004;
Izquierdo et al., 2008; Ordóñez et al., 2010; Wiginton et al.,
2010; Schallenberg-Rodríguez, 2013). For example, Izquierdo
et al. (2008) use a sampling technique to estimate the available
roof surface. Wiginton et al. (2010) use a GIS-based Feature Analyst
(FA) tool to compute the overall rooftop area. Then a sampling
technique with additional variables is used to explore the relation
between population density and PV potential. The International
Energy Agency (IEA, 2002) use statistical information to estimate
the building area (roofs and facades) and to obtain the potential
for solar energy. Several other studies use aerial images (Suzuki
et al., 2007) and ArcGIS together with LiDAR (Light Detection and
Ranging) data to determine roof geometries and associated roof
areas for the PV potential (Tarsha-Kurdi et al., 2007; Carneiro
et al., 2009, 2010; Brito et al., 2012; Lukac et al., 2014; Gooding
et al., 2015; Verso et al., 2015). Advanced cartographic information
and high-resolution images derived from remote sensing technolo-
gies such as LiDAR is expected to produce high accuracy results for
PV potential (Schallenberg-Rodríguez, 2013; Byrne et al., 2014).
Recently, machine learning algorithms (e.g. support vector machi-
nes, artificial neural networks) have been extensively used for pre-
dicting solar radiation on horizontal and tilted surfaces
(Bouzerdoum et al., 2013; Ramedani et al., 2014; Yadav and
Chandel, 2014; Ramli et al., 2015; Lauret et al., 2015) as well as
for geospatial environmental data modelling (Kanevski and
Maignan, 2004; Kanevski et al., 2009). However, using machine
learning algorithms so as to estimate urban characteristics for solar
prediction on building roofs, including the available roof area and
roof geometries, has not been previously explored.

This paper uses Support Vector Machines (SVMs), a kernel-
based machine learning technique, to estimate the solar PV poten-
tial of building rooftops in the greater part of the urban areas of
Switzerland. The data is aggregated at the commune level (the
smallest administrative division) in Switzerland. Using a combina-
tion of machine learning and GIS methods, the main aims of this
study are as follows: (1) to estimate the monthly global horizontal
solar radiation and global tilted solar radiation on tilted roofs for
the entire Switzerland, (2) to estimate the shadowing effects on
the roofs using LiDAR data, (3) to estimate roof slopes and roof
aspects, as well as the available roof surface area, for PV installa-
tion in the urban areas, and (4) to estimate the technical potential
of rooftop PV electricity production in Switzerland.

2. Methodology

We apply a hierarchical methodology which has been used in
several studies (Izquierdo et al., 2008;Wiginton et al., 2010) to esti-
mate the rooftop solar PV potential in Switzerland. The hierarchical

methodology consists of three steps: (i) The physical potential,
which is based on the assessment of the total energy received from
the sun by the urban areas, (ii) the geographic or urban potential,
which reflects the constraints on the locations where the solar
energy can be captured and used for PV installations, and (iii) the
technical potential, which relates to the transformation of the solar
energy received by the available roof area into electrical energy
using the technical characteristics of the PV technology (e.g. effi-
ciency and the performance). For a complete assessment of the
solar energy available on rooftops, however, the social potential
and the economic potential must be considered (Branker et al.,
2011; Bazilian et al., 2013; Lang et al., 2015; Luka et al., 2016).
The social and economic potentials are beyond the scope of this
study and will be considered in a future study. A combination of
machine learning and geographic information systems have been
used in order to estimate various variables in the three levels men-
tioned above and, finally, to determine the total potential for roof-
top solar PV electricity production.

2.1. Support vector regression

Support vector machines (SVMs) are a set of related supervised
learning algorithms that were initially introduced by Vladimir Vap-
nik in the middle of the 1990s (Vapnik, 1995). While the classical
methods of statistical learning are based on the minimisation of
the error in the training data (empirical risk), the main advantages
of SVMs are to offer a good generalisation performance byminimis-
ing both the training error and the confidence interval (Vapnik,
1995, 1998; Smola and Schölkopf, 2004). SVMs are kernel-based
machine learning techniques and usually used in both classification
and regression problems (Scholkopf and Smola, 2002).

The basic idea of a support vector regression (SVR) is as follows
(Vapnik, 1995; Scholkopf and Smola, 2002; Smola and Schölkopf,
2004; Kelleher et al., 2015): Given a training data fðxi; yiÞg (i = 1,

2, . . . , N), where xi 2 Rd is the input vector of dimension d (the
number of features) and yi 2 R is the desired output value (called
the label) for point i, the goal of a regression model is to develop
a function f so that f ðxiÞ � yi for all 1 6 i 6 N in the training data,
and to use f for further predictions. The SVR algorithm approxi-
mates a linear function in the form:

f ðxÞ ¼ hw; xi þ b ð1Þ
where w is defined as the weight vector, that is, an unknown vector

in Rd to be optimised, x is a vector in Rd (input space), h:; :i is the
inner product, and b is a constant. Given a positive real number e;
that is, a margin of tolerance, a linear function f is built and has
the following characteristics:
� f ðxiÞ does not deviate from yi bymore than e. In other words, the
errors will be ignored as long as they are less than e. Any devi-
ation, however, larger than e will not be accepted.

� f should be as flat as possible, which means that it does not fol-
low the fluctuations of the target values too closely, so as to pre-
vent overfitting. Overfitting happens when the model learns to
follow the particular trend of the training data so closely that it
will have trouble adapting to a new dataset, and therefore per-
forms poorly for new predictions.

To ensure the flatness of the function f , the Euclidean norm of
w, kwk, has to be minimised, namely:

Minimize 1
2 kwk2

subject to jyi � hw; xii � bj 6 e; i ¼ 1;2; . . . ;N
ð2Þ

This strict optimization problem is not always feasible due to
the outliers. Outliers are defined as the data points that are beyond
e, the margin of tolerance. Thus, the concept of soft margin is used
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