

Available online at www.sciencedirect.com

Solar Energy xxx (2015) xxx-xxx

www.elsevier.com/locate/solener

Study on the second-order transfer function models for dynamic tests of flat-plate solar collectors Part II: Experimental validation

Jie Deng^{a,b}, Xudong Yang^{a,*}, Pengsu Wang^a

^a Department of Building Science, Tsinghua University, Beijing 100084, PR China

^b Key Laboratory of Solar Thermal Energy and Photovoltaic System, Institute of Electrical Engineering, Chinese Academy of Sciences,

Beijing 100190, PR China

Received 29 September 2013; received in revised form 28 July 2014; accepted 25 January 2015

Communicated by: Associate Editor Hans-Martin Henning

Abstract

In order to validate the accuracy levels of three forms of transfer function models (TFMs), dynamic thermal performance tests of a flat-plate solar air collector with louvered fin structure are conducted. Model coefficients in the TFMs are constructed by strict error analysis and the weighed least square (WLS) method. Comparing with the experimental data, it is verified that the three forms of TFMs perform well and have the similar level of accuracy. It is further demonstrated that, the second-order differential TFMs have the same accuracy as the reduced first-order differential models with the present temperature measurement accuracy using thermocouples. Whilst the collector thermal storage quantities of the second-order differential terms in the TFMs are very small. In order for the second-order TFMs to perform better in the dynamic tests, the measured accuracy of temperatures should be improved. Otherwise, the combined standard uncertainties of the second-order differential terms of temperatures could be larger than the second-order differential terms of temperatures and the second-order terms in the three forms of TFMs would become meaningless. © 2015 Elsevier Ltd. All rights reserved.

Keywords: Flat plate solar collector; Dynamic thermal performance; Transfer function model

1. Introduction

In the companion paper, the second-order transfer function model (TFM) in terms of the collector heat removal factor F_R is presented for dynamic tests of flat-plate solar collectors (Deng et al., 2015). The equivalent relationships among the three different forms of TFMs (TFM by Hou, 2005; ITFM by Kong et al., 2012b, TFM based on F_R) are elucidated. The ITFM by Kong et al. (2012b) is expressed as Eq. (1) below (Eq. (7) in the companion paper). Eq. (2) (Eq. (16) in the companion paper) shows the TFM based on F_R . And Eq. (3) gives the equivalent form of the TFM developed by Hou (2005). The TFM by Eq. (2) based on F_R is equivalent to the ITFM by Eq. (1) according to energy balance. The TFM by Hou (2005) is equivalent to the ITFM by Kong et al. (2012b) as well as the TFM based on F_R when the working fluid inlet temperature rate of change is small enough. Furthermore, the methodology of constructing the model coefficients in the TFMs is elucidated, based on error analysis and the weighed least square (WLS) method.

$$Q_{u} = \dot{m}_{f}c_{f}(T_{fo} - T_{fi}) = F'(\tau\alpha)_{en}K_{\theta\theta}(\theta)A_{a}G_{b}$$

+ $F'(\tau\alpha)_{en}K_{\theta d}(\theta)A_{a}G_{d} + \tau_{cu} \cdot (m_{f}c_{f})\frac{d^{2}T_{f}}{d\tau^{2}} - (mc)_{e}\frac{dT_{f}}{d\tau}$
- $\tau_{cu} \cdot \dot{m}_{f}c_{f} \cdot \left(\frac{dT_{fo}}{d\tau} - \frac{dT_{fi}}{d\tau}\right) - F'A_{l}(U_{L} + wU_{w})(T_{f} - T_{a})$ (1)

http://dx.doi.org/10.1016/j.solener.2015.01.045 0038-092X/© 2015 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Deng, J., et al. Study on the second-order transfer function models for dynamic tests of flat-plate solar collectors Part II: Experimental validation. Sol. Energy (2015), http://dx.doi.org/10.1016/j.solener.2015.01.045

^{*} Corresponding author. Tel.: +86 10 6278 8845; fax: +86 10 6277 3461. *E-mail address:* xyang@tsinghua.edu.cn (X. Yang).

ARTICLE IN PRESS

Nomenclature

A_a	transparent frontal area or the aperture area of m_{1}^{2}	T_f	characteristic temperature of working fluid, °C
	a collector, m ⁻	I_{fi}	collector inlet temperature, °C
A_g	gross collector area, m ⁻	I fo	collector outlet temperature, °C
A_l	total heat dissipating surface area of solar col-	TFM	transfer function model
	lector, m ²	$u_C(X)$	combined standard uncertainty of the quanti-
A_t	heat transfer area from collector absorber to flu-		ty X, unit is the same as X
	id, m^2	U_L	overall heat loss coefficient of a solar collector,
b_0	a constant used in incident angle modifier equa-		$W/(m^2 \circ C)$
	tion, dimensionless	U_w	wind heat loss coefficient, $J/(m^3 \circ C)$
С	specific heat, J/(kg °C)	\dot{V}_f	volume flow rate of the working fluid, m ³ /h
D	diameter, m	WLS	weighed least square
F'	solar collector flow efficiency factor, dimension-	W	outdoor wind velocity, m/s
F_R	solar collector heat removal factor, dimension-	Greek symbols	
	less	α	absorptance, dimensionless
G_b	beam irradiance of inclined surface, W/m ²	β	collector slope angle, °
G_d	diffuse solar irradiance of inclined surface, W/	θ	incidence angle on the tilted surface of a collec-
	m^2		tor, °
G_{g}	global solar irradiance of inclined surface, W/m ²	ρ	density, kg/m ³ ;
IŤFM	improved transfer function model	τ	time, s; transmittance of glass cover, dimension-
$K_{\theta b}(\theta)$	collector incidence angle modifier for beam irra-		less
	diance, dimensionless	τ_{cu}	time scale indicating solar collector heat transfer
$K_{\theta d}(\theta)$	collector incidence angle modifier for diffuse		rapidity, s
	irradiance, dimensionless	$(\tau \alpha)_{en}$	effective transmittance-absorptance product at
L	length of collector, m	() en	normal incidence, dimensionless
LS	least square		
т	mass, kg	Subscr	<i>ipt</i>
\dot{m}_f	mass flow rate of the working fluid, kg/s	а	ambient
$(mc)_{a}$	effective thermal capacitance of a solar collector,	b	collector absorber plate
\ /e	J/°C	DT	dynamic test
O_{μ}	useful heat gain of the collector, W	exp	experimental value
$\tilde{O}DT$	quasi-dynamic test	f	working fluid
\widetilde{R}^2	statistical variance	fi	working fluid inlet
t	student-t value of statistics, dimensionless	fo	working fluid outlet
T_{a}	ambient temperature. °C	pred	model prediction value
T_{h}	lumped mean temperature of the absorber plate.	I ····	A
υ	°C		

$$Q_{u} = \dot{m}_{f}c_{f}(T_{fo} - T_{fi})$$

$$= F_{R}(\tau\alpha)_{en}K_{\theta\theta}(\theta)A_{a}G_{b} + F_{R}(\tau\alpha)_{en}K_{\theta d}(\theta)A_{a}G_{d}$$

$$-\frac{\tau_{cu}}{2} \cdot (m_{f}c_{f})\left(\frac{d^{2}T_{fo}}{d\tau^{2}} + \frac{d^{2}T_{fi}}{d\tau^{2}}\right)$$

$$-\left[\frac{1}{2}(mc)_{e} + \tau_{cu} \cdot \dot{m}_{f}c_{f}\right]\frac{dT_{fo}}{d\tau} + \left[\tau_{cu} \cdot \dot{m}_{f}c_{f} - \frac{1}{2}(mc)_{e}\right]$$

$$\cdot \frac{dT_{fi}}{d\tau} - F_{R}A_{l}(U_{L} + wU_{w})(T_{fi} - T_{a})$$
(2)

$$Q_{u} = \dot{m}_{f}c_{f}(T_{fo} - T_{fi})$$

$$= \dot{m}_{f}c_{f}\left[-\frac{1}{B}\frac{d^{2}T_{fo}}{d\tau^{2}} - \frac{A}{B}\frac{dT_{fo}}{d\tau} + \frac{C}{B}\frac{dT_{fi}}{d\tau} + \frac{E_{1}}{B}G_{b} + \frac{E_{2}}{B}G_{d} + \frac{F}{B}(T_{fi} - T_{a})\right]$$
(3)

where the time scale τ_{cu} , effective collector thermal capacity $(mc)_e$ and the incidence angle modifier for solar beam radiation are respectively given as:

Please cite this article in press as: Deng, J., et al. Study on the second-order transfer function models for dynamic tests of flat-plate solar collectors Part II: Experimental validation. Sol. Energy (2015), http://dx.doi.org/10.1016/j.solener.2015.01.045

2

Download English Version:

https://daneshyari.com/en/article/5451358

Download Persian Version:

https://daneshyari.com/article/5451358

Daneshyari.com