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a b s t r a c t

A key aspect of the developing field of materials informatics is optimally guiding experiments or calcu-
lations towards parts of the relatively vast feature space where a material with desired property may be
discovered. We discuss our approach to adaptive experimental design and the methods developed in
decision theory and global optimization which can be used in materials science. We show that the use
of uncertainties to trade-off exploration versus exploitation to guide new experiments or calculations
generally leads to enhanced performance, highlighting the need to evaluate and incorporate errors in pre-
dictive materials design. We illustrate our ideas on a computed data set of M2AX phases generated using
ab initio calculations to find the sample with the optimal elastic properties, and discuss how our approach
leads to the discovery of new NiTi-based alloys with the smallest thermal dissipation.

� 2016 Elsevier Ltd. All rights reserved.

1. Overview and need for design

There has been much interest recently in using information
science tools for materials discovery and design, with various
national initiatives (Office of Science and Technology Policy at
theWhite House, Basic Energy Sciences and National Science Foun-
dation [1,2]) helping to define field of ‘‘materials informatics”. The
focus of this article is to show how experiments or calculations can
be guided optimally to enable the discovery of new materials with
targeted properties in as few iterations as possible. The central pre-
mise in experimental design is that experiments and/or calculations
are expensive and time-consuming and therefore desired is an effi-
cient and rational approach to discovery so that the laborious trial-
and-error efforts may be avoided. The field of experimental design
using statistical methods has a rich and long history [3,4] and it has
been applied in many areas including aspects of materials process-
ing in chemical engineering [5–7] and the design of computer
experiments [8]. Our focus will be on the problem of materials dis-
covery and the use of methods based on the value of information
and global optimization techniques [9–11], which have been suc-
cessfully developed and applied in the aerospace and automobile
industries [12].

A key element of the discovery approach we will use is recog-
nizing how the role of uncertainties due to statistical inference or

measurements should be used to explore the vast search space
for materials with better properties than those that exist in the
available training data set [13]. This is a departure from most of
the activity in materials informatics field, which involves generat-
ing and screening relatively large amounts of computational data
on specific materials and identifying correlations in the inputs
(descriptors or features) [14,15]. A number of recent studies have
also used regression methods to identify materials for further
examination [16–19]. Having to deal with relatively small amounts
of data is typical of many materials design problems that involve
learning from experimental data. By applying methods developed
in fields such as decision theory and global optimization, we show
how an adaptive design loop can iteratively guide the next exper-
iments or computations for materials with targeted properties,
especially if the experiments and/or calculations are expensive to
perform [11,20]. Such methods have been successfully applied in
the automotive and aerospace industries where complex, expen-
sive codes are in use and it is too time-consuming to use these to
exhaustively search the high-dimensional feature space in a
brute-force manner [21]. Instead, surrogate or inference models
are used for the design. After a broad overview of the approaches
so far utilized in the nascent and emerging field of materials infor-
matics, we will illustrate our ideas with examples on materials
problems using both computational and experimental data.

The materials databases in efforts such as materialsprojects.org
[22], AFLOWLIB [23] and OQMD [24] contain hundreds of thousands
of compounds taking up 10–few 100’s of gigabytes (GB) of data. To
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put this in context, Google and Facebook process 100s of petabytes
(PB) of data in a year. Thus, the materials discovery problem from
these materials databases is comparatively not a big data problem.
Moreover, the notion of a materials or inorganic gene is itself not a
new concept, it even predates the decoding of the human gene by
about two decades. It was the English crystallographer Alan Mckay,
then at Birbeck College, who suggested that ‘‘the crystal is a struc-
ture, the description of which is much smaller than the structure
itself” and it serves as a ‘‘carrier of information”. He proposed the
construction of an inorganic gene as a biological approach to inor-
ganic systems so one has a genomic paradigm, i.e. how fundamen-
tal pieces of information taken as bits of data collectively, describe
a crystal [25]. The problem of materials informatics, in the way we
think about it today, is also not new. Chelikowsky and Phillips [26]
studied the classic problem of classifying AB sp-bonded octet solids
with sixfold coordinated rocksalt or fourfold coordinated zincble-
nde/wurtzite in the 1970s. They recognized that the energy differ-
ences between structures calculated using nonlocal
pseudopotentials were often too small (0.1% of the cohesive
energy) to be calculated in those days, and suggested an informa-
tion theory point of view to learn rules on bonding from the data
containing roughly 80 compounds. Following work of Mooser
and Pearson [27] and St. John and Bloch [28], they went on to con-
struct structural maps to classify the AB compounds. These were
defined by the minimal number of features, in terms of
symmetry-adapted combinations of s and p-orbitals of atoms A
and B in the compound calculated using nonlocal pseudopoten-
tials. Recently, several groups have revisited this problem from a
statistical learning perspective using classifiers such as decision
trees and support vector machines to estimate the average classi-
fication accuracy and the associated model variance where a deci-
sion boundary is learned in a supervised manner [29–31,19]. Today
the use of elaborate machine learning tools allows us to classify
and draw the decision boundaries with far greater accuracy than
the use of pencil and paper approaches of yesteryears. The
approach has suggested new features, such as the difference in
the effective Born charges in the rocksalt and zincblende/wurtzite
structures [32], as well as new combinations of orbital radii which
allow us to classify with greater accuracy than original features
[19].

Much of the recent interest in the field has been catalyzed by
the Materials Genome Initiative (MGI) with the overarching goal
to cut in half the time and costs of bringing new materials to mar-
ket. Thus, the aims of MGI span materials discovery and property
optimization all the way to deployment via systems engineering.
How exactly this is to be done and what is the appropriate frame-
work or paradigm is the key question. Why is there a need to accel-
erate the process? If we look at the time it has taken for various
materials to be deployed, it is roughly of the order of 25–30 years.
The discovery and optimization is thus a key challenge; we need to
know the appropriate materials, with targeted properties, to be
deployed. For example, the III-V GaAs semiconductors had enor-
mous impact between 1965 and 1985, especially with Si paving
the way for Very Large-Scale Integration (VLSI) technology due to
the transformational impact of the Czochralski process for fabricat-
ing single crystals. Similarly, after 200 years of lighting technology
the efficiencies gained barely approach 30–40%, but the discovery
of wide band gap materials has paved the way for their applica-
tions as energy-saving light emitting diodes (LEDs) and in high
power and high temperature electronics. The theme of driving
innovation through new chemistries and structural motifs could
not be more true than in the case of photovoltaics to harness
energy. We have seen a tremendous rise over the last 3–4 years
in photovoltaic efficiency (to �22%) with the use of hybrid (organic
molecule at A-site) perovskites [33]. The perovskite is a very differ-
ent structure and shows the importance of how the chemistry and

structure influence the property and raises the question of whether
there are other structural arrangements to try other than per-
ovskites. Thus, the challenge we have is to combine chemical and
structural complexity which gives rise to rich, emerging behavior.
The chemical space of even simple perovskites can be quite exten-
sive, in the case of the perovskite structural motif there are over
3000 possible chemistries and numerous combinations of the basic
structural motif. Only about 20% of the chemistries/structure are
experimentally investigated and reported in the Inorganic Crystal
Structure Database [34].

So how do we accelerate the discovery process in a rational
manner? Materials design is an optimization problem with the
goal of maximizing (or minimizing) some desired property of a
material, denoted by y, by varying some features that characterize
the material chemistry, structure, composition, processing condi-
tions and/or microstructure, denoted by x. Optimizing a material
generally proceeds by making predictions about y and then select-
ing or computationally/intuitively designing an x at which y is
measured and the result ðx; yÞ is added to the database of known
properties. The primary hurdle in material design is measuring y
because it requires synthesis and characterization of new materi-
als, which can be expensive and time-consuming. For this reason
it is necessary to have an optimization approach to minimize the
number of new materials that need to be experimentally tested.
A key aspect is feature selection, identifying features that charac-
terize the material composition and which help optimize the
desired material property in terms of which one wants to optimize
a given property. This can an be done using domain knowledge
where the meaning and importance of the selected features is
clear, or by the use of high-throughput approaches in which a cer-
tain number of features are initially chosen and various binary or
ternary combinations of new features from this initial set are
screened for their relative importance. Thus, finding targeted prop-
erties is an optimization, control and learning problem. It is impor-
tant to have forward models that are physics-driven (e.g.
Ginzburg-Landau or phase-field theory, finite element), but these
are often complex and difficult to use for design. Thus, surrogate
or inference models are essential for optimizing a targeted prop-
erty. In addition, we want to glean certain aspects of the physics
by learning the inter-relationships among the features.

2. Materials by adaptive design

The state-of-the-art in materials informatics consists of (a)
assembling a library of crystal structures, chemistries relevant to
the problem and (b) defining the training space with a given num-
ber of samples and features. The features can be bond angles, bond
lengths, energetics from first principles calculations, as well as
experimental data, such as thermodynamics from experiments.
This is used to build an inference model using off-the-shelf pattern
recognition tools, such as classifiers and regressors based on linear
or kernel ridge regression, least squares regression, decision trees,
Gaussian process modeling or support vectors. There are very few
examples one can cite of new materials synthesized, characterized
after prediction through this approach. Part of the difficulty is that
the data for real materials is very limited in size (�10–100 sam-
ples), the materials are multicomponent with defects and there
are uncertainties that can arise from sampling or measurement
errors. In addition, the search space of materials that are missing
or yet to be synthesized is often very large (�1 million). Thus,
high-throughput approaches using computational data can be lim-
ited in how well they can do. For example, the search for Pb-free
piezoelectrics often involves much more than screening a large
number of chemistries in the perovskite ABO3 structure based on
size of energy band gap and energy differences between distorted
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