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In recent years, there has been a large effort in the materials science community to employ materials
informatics to accelerate materials discovery or to develop new understanding of materials behavior.
Materials informatics methods utilize machine learning techniques to extract new knowledge or predic-
tive models out of existing materials data. In this review, we discuss major advances in the intersection
between data science and atom-scale calculations with a particular focus on studies of solid-state, inor-
ganic materials. The examples discussed in this review cover methods for accelerating the calculation of
computationally-expensive properties, identifying promising regions for materials discovery based on
existing data, and extracting chemical intuition automatically from datasets. We also identify key issues
in this field, such as limited distribution of software necessary to utilize these techniques, and opportu-
nities for areas of research that would help lead to the wider adoption of materials informatics in the ato-
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1. Introduction

Over the past several decades, atomistic calculations have
become increasingly prevalent tools in materials science. These
calculations start from a description of the physical interactions
between atoms in a solid, and ultimately describe their collective
behavior. The fundamental nature of these methods makes them
powerful tools for studying the behavior of materials with few
assumptions about underlying mechanisms. With the advent of
first-principles techniques based on Density Functional Theory
(DFT), it is even possible to accurately and efficiently compute
the interaction between atoms purely from quantum mechanics
[1]. In general, the versatility of atomistic calculation techniques
has allowed them to be applied to a broad spectrum of materials
problems, including the design of aluminum alloys and predicting
the properties of materials formed deep within the core of the
Earth [1]. More recently, the ability to efficiently predict the elec-
tronic structure of materials from first-principles and advance-
ments of computational power and algorithmic efficiency has
enabled “high-throughput” calculations, which involve the pre-
dicting the performance of thousands of materials within single
studies [2-5].

While powerful tools, atomic-scale calculations are intrinsically
limited by their computational cost, which places strong limits on
the space and time scales accessible to calculations. While calcula-
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tions containing trillions of atoms or spanning over a millisecond
have been demonstrated [6,7], they are not yet routine and only
possible with simplistic models for the interatomic interactions.
More accurate techniques (e.g., DFT), can require orders of magni-
tudes more computational resources. Practically, the large compu-
tational cost of atomistic calculations limits the number of
materials that can be assessed and, therefore, the size of the mate-
rials design space. While several groups have used DFT to evaluate
the T = 0 K stability of hundreds of thousands of materials [3-5,8],
computing the thermal conductivity, which has a much greater
computational cost, has only be accomplished for one hundred [9].

One path to lowering the computational costs and expanding
the utility of atomistic calculations is to make better use of the
results of previous calculations. Recently, there have been many
significant advancements in the application of machine learning
to materials science - a field often described as “Materials Infor-
matics” [10]. The goal of materials informatics methods, broadly,
is to extract knowledge from large datasets of materials properties.
This knowledge can take many forms. For example, the knowledge
could be a predictive model for a complex material property based
on simple, easier-to-compute properties of the material. Or, it
could be a small set of previously-unknown factors that help
explain materials behavior. Of course, these activities are often
the goals of conventional scientific practice. The power of materials
informatics is that creating these models and learning these
descriptors can be done quickly and automatically.

In this review, we will discuss the intersection between materi-
als informatics and atomistic calculations with a particular focus
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on solid, inorganic materials. There has been a great amount of
recent work using machine learning in the atomistic simulation
of organic materials [11-21] and Metal Oxide Frameworks (MOFs)
[22-24], which do not fall within the intended scope of this review.
Additionally, we will only focus on a few illustrative examples in
detail rather than exhaustively covering the entire breadth of this
field. In particular, we will cover several distinct areas that have
seen significant advancements in recent years, including the devel-
opment of techniques to replace ab initio calculations with faster
surrogate models, using machine learning models to guide the
search for new compounds, and extracting intuitive rules from col-
lections of atomistic calculation data. There are topics that we will
only allude to such as using machine learning to create density
functionals [25-29] and machine-learning-based empirical poten-
tials, which have been reviewed elsewhere [30]. Finally, we will
conclude with a discussion of outstanding challenges and opportu-
nities in applying machine learning to enhance atomistic
calculations.

2. Principles of materials informatics

All materials informatics approaches are based on three distinct
components: (1) a resource of materials data, (2) a representation
to quantitatively describe each material, and (3) a machine learn-
ing algorithm to discover patterns within the data. The construc-
tion of databases of materials properties is a grand challenge in
its own right [31-34], and covered in a review by Campbell in this
issue [35]. The technology behind algorithms that learn predictive
models from data are also described well in many other resources
[36,37]. Consequently, for the purposes of this review, much of our
discussion will focus on the second ingredient: representations.

The representation of a material is a set of quantitative attri-
butes that describe its relevant characteristics. The attributes
included in a representation are what serve as input to the models
produced by machine learning. As discussed in Refs. [38,39], a rep-
resentation should fulfill several requirements:

1. Complete: Features of a material relevant to the problem being
studied should be captured.

The goal in creating a “complete” representation is to provide
enough information to sufficiently differentiate materials. Depend-
ing on the target application, it may be necessary to describe differ-
ent aspects of a material. For example, if all materials in the dataset
have the same crystal structure, it may be possible to differentiate
the materials in the dataset by their composition. In other cases, it
could be necessary to include both the crystal structure and the
processing conditions.
should have similar

2. Descriptive: Similar materials

representations.

The approach for creating descriptive representations is to
introduce attributes that reflect physical intuition about what fac-
tors influence the property of interest. For example, the difference
in electronegativity between elements in a compound is correlated
to its formation energy. By including the electronegativity differ-
ence between constituent as an attribute, it is possible for the
machine learning algorithm to recognize the strong relationship
between this parameter and the formation energy, and use it to
create a predictive rule.

3. Simple: Computing the representation should be fast.

The speed of a machine learning model includes both the time
to compute the representation and evaluate the machine learning

model. The combination of these two calculations should be faster
than the method used to create the training set for the model.

4. Unique: All materials should have exactly one representation.

If a single material has multiple representations, it is possible to
predict different properties for the same material. Unique repre-
sentations, however, are not a strict requirement. Montavon
et al., for example, have accommodated a non-unique representa-
tion by including multiple representations of each material in the
training set and estimating the average of all representations for
a material as the output of the model [12].

Even in the limited context of the application of materials infor-
matics to atomistic calculations, choices in representation can vary
drastically. For one, in some problems it may be sufficient to differ-
entiate materials based on the composition and others it is neces-
sary to include the atomic structure. Or, it may even be necessary
to introduce the electronic charge density into the representation
[29,40]. Also, the maximum acceptable time required to compute
the representation may vary. Viewed together, the studies
described in this work demonstrate many innovative approaches
and general principles in the design of representations.

The final step of creating a machine learning model is the selec-
tion of an appropriate learning algorithm. There are a wide variety
of available machine learning algorithms, as demonstrated by the
Weka [41] and scikit-learn [42] software packages, and no estab-
lished way to know which is the best for a certain problem a priori.
Usually, the process of algorithm selection involves using cross-
validation techniques to find which algorithm is likely to have
the best predictive accuracy (a process that is automatable [43]).
However, one must also consider factors such as interpretability,
training and evaluation speed, differentiability, and ability to pro-
vide robust uncertainty estimates. For example, compressed sens-
ing algorithms can lead to simple, easy-to-interpret linear models
that are well-suited for understanding underlying physics [39,44].
Ensembles of decision trees, such as random and rotation forest
[45,46], lead to strong predictive accuracy but do not provide a
human-understandable model and do not have continuous deriva-
tives [47,48]. Gaussian Process Regression models are differen-
tiable and provide uncertainty estimates for individual
predictions, which is useful when using ML for optimization
[9,49-52], but have a training time that scales O(N®) with the data-
set size, making it difficult to use with large datasets [53]. As
alluded to in the following sections, many of these algorithms have
been successfully employed to learn from atomistic calculations.

3. Key applications of materials informatics in atomistic
calculations

In this section, we describe several broad areas where materials
informatics has been applied to atomistic calculations. First, we
discuss examples where machine learning was applied to replace
computationally expensive ab initio calculations with faster, surro-
gate models. Then, we describe examples of where machine learn-
ing has been used to predict yet-undiscovered crystalline
compounds. Additionally, we show how machine learning has
been employed to extract knowledge about material behavior out
of datasets created using atomistic calculations.

3.1. Replacing ab initio calculations with faster models

Ab Initio calculations offer the ability to compute the properties
of materials with minimal experimental input - but at a large
computational cost. While single calculations of the electronic
structure with DFT can require only 10s of CPU-minutes for
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