Accepted Manuscript

Title: Sodium Alginate/Carboxyl-Functionalized Graphene Composite Hydrogel via Neodymium Ions Coordination

Author: Qianqian Huang, Shunli Liu, Kewen Li, Imtiaz Hussain, Fang Yao, Guodong Fu

PII: S1005-0302(16)30200-6

DOI: http://dx.doi.org/doi: 10.1016/j.jmst.2016.11.003

Reference: JMST 829

To appear in: Journal of Materials Science & Technology

Received date: 18-7-2016 Revised date: 19-9-2016 Accepted date: 14-10-2016

Please cite this article as: Qianqian Huang, Shunli Liu, Kewen Li, Imtiaz Hussain, Fang Yao, Guodong Fu, Sodium Alginate/Carboxyl-Functionalized Graphene Composite Hydrogel via Neodymium Ions Coordination, *Journal of Materials Science & Technology* (2016), http://dx.doi.org/doi: 10.1016/j.jmst.2016.11.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Sodium Alginate/Carboxyl-functionalized Graphene Composite Hydrogel via

Neodymium Ions Coordination

Qianqian Huang, Shunli Liu, Kewen Li, Imtiaz Hussain, Fang Yao, Guodong Fu*

School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189,

China

* Corresponding author. Tel.: +86 25 52090625; Fax: +86 25 52090625

Email address: 101010855@seu.edu.cn (Guodong Fu).

[Received 18 July 2016; Received in revised form 19 September 2016; Accepted 14 October

2016]

ABSTRACT

A facile method for the preparation of sodium alginate (SA)/carboxyl-functionalized

graphene (G-COOH) composite hydrogel was developed. Based on the coordination

ability of lanthanide ions to the carboxyl groups, a series of hydrogel derived from

different ratios of SA and G-COOH were fabricated by neodymium (Nd3+) ions

coordination. A relatively uniform layered structure was recorded by SEM at the

interior of SA/G-COOH hydrogel. Several parameters such as water content, swelling

ratio (SR), tensile test and solvent resistance were also investigated. The

SA/G-COOH composite hydrogel showed excellent mechanical strength, and the

tensile strength of SA/G-COOH composite hydrogel reaches 53.72 MPa at high water

content. Due to the coordination ability of Nd³⁺ ions, the hydrogel also exhibited an

excellent solvent resistance and stability.

KEYWORDS: Carboxyl-functionalized graphene, Sodium alginate, Hydrogel,

Neodymium ions coordination, Layered structure.

1. Introduction

1

Download English Version:

https://daneshyari.com/en/article/5451670

Download Persian Version:

https://daneshyari.com/article/5451670

Daneshyari.com