
Author's Accepted Manuscript

Rational design of carbon-doped TiO2 modified g-C₃N₄ via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability

Chengwu Yang, Jiaqian Qin, Zhe Xue, Mingzhen Ma, Xinyu Zhang, Riping Liu

www.elsevier.com/locate/nanoenergy

PII: S2211-2855(17)30550-5

DOI: http://dx.doi.org/10.1016/j.nanoen.2017.09.012

NANOEN2188 Reference:

To appear in: Nano Energy

Received date: 30 July 2017 Revised date: 28 August 2017 Accepted date: 5 September 2017

Cite this article as: Chengwu Yang, Jiaqian Qin, Zhe Xue, Mingzhen Ma, Xinyu Zhang and Riping Liu, Rational design of carbon-doped TiO₂ modified g-C₃N₄ via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability, Nano Energy, http://dx.doi.org/10.1016/j.nanoen.2017.09.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Rational design of carbon-doped TiO_2 modified $g-C_3N_4$ via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability

Chengwu Yang^a, Jiaqian Qin ^{b,*}, Zhe Xue^a, Mingzhen Ma^a, Xinyu Zhang^{a,*}, and Riping Liu^{a,*}

^aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China

^bMetallurgy and Materials Science Research Institute, Chulalongkorn University,

Bangkok 10330, Thailand

ABSTRACT

Graphitic carbon nitride (g-C₃N₄) photocatalysts have attracted much attention towards harvesting solar energy for applications in energy and environment sectors. However, separation of electron-hole pairs is an intrinsic problem for the bulk g-C₃N₄. Here, we report the tiny amount of carbon doped TiO₂ modified g-C₃N₄ (C-TiO₂/g-C₃N₄) with a narrow bandgap and prolonged lifetime of charge carriers. This heterojunction photocatalysts were successfully fabricated via a facile heat treatment under atmosphere. The enhanced separation of photogenerated charge carriers and narrow band gap confer superior photocatalytic activities with 5.728 mmol/g photogenerated hydrogen gas for 5h and 52.395 mmol/g for 64h in

Download English Version:

https://daneshyari.com/en/article/5451748

Download Persian Version:

https://daneshyari.com/article/5451748

<u>Daneshyari.com</u>